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1 Getting Started

Product Overview
Spline Toolbox software contains versions of the essential MATLAB®

programs of the B-spline package (extended to handle also vector-valued
splines) as described in A Practical Guide to Splines, (Applied Math. Sciences
Vol. 27, Springer Verlag, New York (1978), xxiv + 392p; revised edition
(2001), xviii+346p), hereafter referred to as PGS. The toolbox makes it easy to
create and work with piecewise-polynomial functions.

The typical use envisioned for this toolbox involves the construction and
subsequent use of a piecewise-polynomial approximation. This construction
would involve data fitting, but there is a wide range of possible data that
could be fit. In the simplest situation, one is given points (ti,yi) and is looking
for a piecewise-polynomial function f that satisfies f(ti) = yi, all i, more or less.
An exact fit would involve interpolation, an approximate fit might involve
least-squares approximation or the smoothing spline. But the function to be
approximated may also be described in more implicit ways, for example as the
solution of a differential or integral equation. In such a case, the data would
be of the form (Af)(ti), with A some differential or integral operator. On the
other hand, one might want to construct a spline curve whose exact location is
less important than is its overall shape. Finally, in all of this, one might be
looking for functions of more than one variable, such as tensor product splines.

Care has been taken to make this work as painless and intuitive as possible.
In particular, the user need not worry about just how splines are constructed
or stored for later use, nor need the casual user worry about such items as
“breaks” or “knots” or “coefficients”. It is enough to know that each function
constructed is just another variable that is freely usable as input (where
appropriate) to many of the commands, including all commands beginning
with fn, which stands for function. At times, it may be also useful to know
that, internal to the toolbox, splines are stored in different forms, with the
command fn2fm available to convert between forms.

At present, the toolbox supports two major forms for the representation of
piecewise-polynomial functions, because each has been found to be superior
to the other in certain common situations. The B-form is particularly useful
during the construction of a spline, while the ppform is more efficient when
the piecewise-polynomial function is to be evaluated extensively. These two
forms are almost exactly the B-representation and the pp representation
used in PGS.
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Product Overview

But, over the years, the Spline Toolbox product has gone beyond the programs
in PGS. The toolbox now supports the ‘scattered translates’ form, or stform,
in order to handle the construction and use of bivariate thin-plate splines,
and also two ways to represent rational splines, the rBform and the rpform,
in order to handle NURBS.

Splines can be very effective for data fitting because the linear systems to be
solved for this are banded, hence the work needed for their solution, done
properly, grows only linearly with the number of data points. In particular,
the MATLAB sparse matrix facilities are used in the Spline Toolbox product
when that is more efficient than the toolbox’s own equation solver, slvblk,
which relies on the fact that some of the linear systems here are even almost
block diagonal.

All polynomial spline construction commands are equipped to produce
bivariate (or even multivariate) piecewise-polynomial functions as tensor
products of the univariate functions used here, and the various fn...
commands also work for these multivariate functions.

There are various examples, all accessible through the Demos tab in the
MATLAB Help browser. You are strongly urged to have a look at some of
them, or at the GUI splinetool, before attempting to use this toolbox, or
even before reading on.
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1 Getting Started

MATLAB Splines
The MATLAB technical computing environment provides spline
approximation via the command spline. If called in the form cs =
spline(x,y), it returns the ppform of the cubic spline with break sequence
x that takes the value y(i) at x(i), all i, and satisfies the not-a-knot end
condition. In other words, the command cs = spline(x,y) gives the same
result as the command cs = csapi(x,y) available in the Spline Toolbox
product. But only the latter also works when x,y describe multivariate gridded
data. In MATLAB, cubic spline interpolation to multivariate gridded data is
provided by the command interpn(x1,...,xd,v,y1,...,yd,'spline')
which returns values of the interpolating tensor product cubic spline at the
grid specified by y1,...,yd.

Further, any of the Spline Toolbox fn... commands can be applied to the
output of the MATLAB spline(x,y) command, with simple versions of
the Spline Toolbox commands fnval, ppmak, fnbrk available directly in
MATLAB, as the commands ppval, mkpp, unmkpp, respectively.
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Expected Background

Expected Background
The Spline Toolbox product started out as an extension of the MATLAB
environment of interest to experts in spline approximation, to aid them in the
construction and testing of new methods of spline approximation. Such people
will have mastered the material in PGS.

However, the basic toolbox commands, for constructing and using spline
approximations, are set up to be usable with no more knowledge than it
takes to understand what it means to, say, construct an interpolant or a
least squares approximant to some data, or what it means to differentiate or
integrate a function.

With that in mind, there are sections, like Chapter 2, “Some Simple
Examples”, that are meant even for the novice, while sections devoted to
a detailed example, like the one on constructing a Chebyshev spline or on
constructing and using tensor products, are meant for users interested in
developing their own spline commands.

A “Glossary” at the end of this guide provides definitions of almost all the
mathematical terms used in this document.
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1 Getting Started

Technical Conventions
• “Vectors” on page 1-6

• “Naming Conventions” on page 1-6

• “Using Spline Toolbox Functions” on page 1-7

Vectors
The Spline Toolbox product can handle vector-valued splines, i.e., splines
whose values lie in Rd. Since MATLAB started out with just one variable
type, that of a matrix, there is even now some uncertainty about how to deal
with vectors, i.e., lists of numbers. MATLAB sometimes stores such a list in a
matrix with just one row, and other times in a matrix with just one column.
In the first instance, such a 1-row matrix is called a row-vector; in the second
instance, such a 1-column matrix is called a column-vector. Either way, these
are merely different ways for storing vectors, not different kinds of vectors.

In this toolbox, vectors, i.e., lists of numbers, may also end up stored in a
1-row matrix or in a 1-column matrix, but with the following agreements.

A point in Rd, i.e., a d-vector, is always stored as a column vector. In
particular, if you want to supply an n-list of d-vectors to one of the commands,
you are expected to provide that list as the n columns of a matrix of size [d,n].

While other lists of numbers (e.g., a knot sequence or a break sequence) may
be stored internally as row vectors, you may supply such lists as you please,
as a row vector or a column vector.

Naming Conventions
Most of the Spline Toolbox commands in this toolbox have names that follow
one of the following patterns:

cs... commands construct cubic splines (in ppform)

sp... commands construct splines in B-form

fn... commands operate on spline functions
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Technical Conventions

..2.. commands convert something

..api commands construct an approximation by interpolation

..aps commands construct an approximation by smoothing

..ap2 commands construct a least-squares approximation

...knt commands construct (part of) a particular knot sequence

...dem commands are demonstrations now reached via the Demos tag in
the MATLAB Help browser.

Some of these naming conventions are the result of a discussion with Jörg
Peters, then a graduate student in Computer Sciences at the University of
Wisconsin-Madison.

Note See the “Glossary” for information about notation used in this book.

Using Spline Toolbox Functions
For ease of use, most Spline Toolbox functions have default arguments. In
the reference entry under Syntax, we usually first list the function with all
necessary input arguments and then with all possible input arguments. When
there is more than one optional argument, then, sometimes, but not always,
their exact order is immaterial. When their order does matter, you have to
specify every optional argument preceding the one(s) you are interested in.
In this situation, you can specify the default value for an optional argument
by using [] (the empty matrix) as the input for it. The description in the
reference page tells you the default value for each optional input argument.

As in MATLAB, only the output arguments explicitly specified are returned
to the user.
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2 Some Simple Examples

Introduction
These examples provide some simple ways to make use of the commands in
this toolbox. More complicated examples are given in later sections. Other
examples are available in the various demos, all of which can be reached by
the Demos tab in the MATLAB Help browser. In addition, the command
splinetool provides a graphical user interface (GUI) for you to try several of
the basic spline interpolation and approximation commands from this toolbox
on your data; it even provides various instructive data sets.

Check the reference pages if you have specific questions about the use of the
commands mentioned. Check the Glossary if you have specific questions
about the terminology used; a look into the Index may help.
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Cubic Spline Interpolation

Cubic Spline Interpolation
Suppose you want to interpolate to some smooth data, e.g., to

rand('seed',6), x = (4*pi)*[0 1 rand(1,15)]; y = sin(x);

Then you could try the cubic spline interpolant obtained by

cs = csapi(x,y);

and plotted, along with the data, by

fnplt(cs); hold on, plot(x,y,'o'), set(gca,'Fontsize',16)
legend('cubic spline','data'), hold off

This produces a figure like the following.
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Cubic Spline Interpolant to Some Smooth Data

This is, more precisely, the cubic spline interpolant with the not-a-knot end
conditions, meaning that it is the unique piecewise cubic polynomial with two
continuous derivatives with breaks at all interior data sites except for the
leftmost and the rightmost one. It is the same interpolant as produced by the
MATLAB spline command, spline(x,y).
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2 Some Simple Examples

Periodic Data
We know that the sine function is -periodic. To check how well our
interpolant does on that score, we compute, e.g., the difference in the value of
its first derivative at the two endpoints,

diff(fnval(fnder(cs),[0 4*pi]))
ans = -.0100

which is not so good. If you prefer to get an interpolant whose first and second
derivatives at the two endpoints, 0 and 4*pi, match, use instead the command
csape which permits specification of many different kinds of end conditions,
including periodic end conditions. So, use instead

pcs = csape(x,y,'periodic');

for which we get

diff(fnval(fnder(pcs),[0 4*pi]))
ans = 0

as the difference of end slopes. Even the difference in end second derivatives
is small:

diff(fnval(fnder(pcs,2),[0 4*pi]))
ans = -4.6074e-015
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Other End Conditions
Other end conditions can be handled as well. For example,

cs = csape(x,[3,y,-4],[1 2]);

provides the cubic spline interpolant with breaks at the and with its slope
at the leftmost data site equal to 3, and its second derivative at the rightmost
data site equal to -4.
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General Spline Interpolation
If you want to interpolate at sites other than the breaks and/or by splines
other than cubic splines with simple knots, then you use the spapi command.
In its simplest form, you would say

sp = spapi(k,x,y);

in which the first argument, k, specifies the order of the interpolating spline;
this is the number of coefficients in each polynomial piece, i.e., 1 more than
the nominal degree of its polynomial pieces. For example, the next figure
shows a linear, a quadratic, and a quartic spline interpolant to our data, as
obtained by the statements

sp2 = spapi(2,x,y); fnplt(sp2,2), hold on
sp3 = spapi(3,x,y); fnplt(sp3,2,'k--'), set(gca,'Fontsize',16)
sp5 = spapi(5,x,y); fnplt(sp5,2,'r-.'), plot(x,y,'o')
legend('linear','quadratic','quartic','data'), hold off
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Spline Interpolants of Various Orders to Smooth Data

Even the cubic spline interpolant obtained from spapi is different from
the one provided by csapi and spline. To emphasize their difference, we
compute and plot their second derivatives, as follows:

fnplt(fnder(spapi(4,x,y),2)), hold on, set(gca,'Fontsize',16)
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General Spline Interpolation

fnplt(fnder(csapi(x,y),2),2,'k--'),plot(x,zeros(size(x)),'o')
legend('from spapi','from csapi','data sites'), hold off

This gives the following graph:
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from spapi
from csapi
data sites

Second Derivative of Two Cubic Spline Interpolants to the Same Smooth Data

Since the second derivative of a cubic spline is a broken line, with vertices
at the breaks of the spline, we can see clearly that csapi places breaks at
the data sites, while spapi does not.
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Knot Choices
It is, in fact, possible to specify explicitly just where the spline interpolant
should have its breaks, using the command

sp = spapi(knots,x,y);

in which the sequence knots supplies, in a certain way, the breaks to be used.
For example, recalling that we had chosen y to be sin(x), the command

ch = spapi(augknt(x,4,2),[x x],[y cos(x)]);

provides a cubic Hermite interpolant to the sine function, namely the
piecewise cubic function, with breaks at all the x(i)’s, that matches the sine
function in value and slope at all the x(i)’s. This makes the interpolant
continuous with continuous first derivative but, in general, it has jumps across
the breaks in its second derivative. Just how does this command know which
part of the data value array [y cos(x)] supplies the values and which the
slopes? Notice that the data site array here is given as [x x], i.e., each data
site appears twice. Also notice that y(i) is associated with the first occurrence
of x(i), and cos(x(i)) is associated with the second occurrence of x(i).
The data value associated with the first appearance of a data site is taken
to be a function value; the data value associated with the second appearance
is taken to be a slope. If there were a third appearance of that data site, the
corresponding data value would be taken as the second derivative value to
be matched at that site. See Chapter 5, “The B-form” for a discussion of the
command augknt used here to generate the appropriate "knot sequence".
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Smoothing
What if the data are noisy? For example, suppose that the given values are

noisy = y + .3*(rand(size(x))-.5);

Then you might prefer to approximate instead. For example, you might try
the cubic smoothing spline, obtained by the command

scs = csaps(x,noisy);

and plotted by

fnplt(scs,2), hold on, plot(x,noisy,'o'), set(gca,'Fontsize',16)
legend('smoothing spline','noisy data'), hold off

This produces a figure like this:
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Cubic Smoothing Spline to Noisy Data

If you don’t like the level of smoothing done by csaps(x,y), you can change
it by specifying the smoothing parameter, p, as an optional third argument.
Choose this number anywhere between 0 and 1. As p changes from 0 to
1, the smoothing spline changes, correspondingly, from one extreme, the
least squares straight-line approximation to the data, to the other extreme,
the "natural" cubic spline interpolant to the data. Since csaps returns the
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2 Some Simple Examples

smoothing parameter actually used as an optional second output, you could
now experiment, as follows:

[scs,p] = csaps(x,noisy); fnplt(scs,2), hold on
fnplt(csaps(x,noisy,p/2),2,'k--'), set(gca,'Fontsize',16)
fnplt(csaps(x,noisy,(1+p)/2),2,'r:'), plot(x,noisy,'o')
legend('smoothing spline','more smoothed','less smoothed',...
'noisy data'), hold off

This produces the following picture.
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Noisy Data More or Less Smoothed

At times, you might prefer simply to get the smoothest cubic spline sp that is
within a specified tolerance tol of the given data in the sense that

norm(noisy - fnval(sp,x))^2 <= tol

This spline is provided by the command

sp = spaps(x,noisy,tol);
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Least Squares
If you prefer a least squares approximant, you can obtain it by the statement

sp = spap2(knots,k,x,y);

in which both the knot sequence knots and the order k of the spline must
be provided.

The popular choice for the order is 4, and that gives you a cubic spline. If you
have no clear idea of how to choose the knots, simply specify the number of
polynomial pieces you want used. For example,

sp = spap2(3,4,x,y);

gives a cubic spline consisting of three polynomial pieces. If the resulting
error is uneven, you might try for a better knot distribution by using newknt
as follows:

sp = spap2(newknt(sp),4,x,y);
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Using the Spline Fits
If f is one of these splines cs, ch, or sp so constructed, then, as we saw
already, it can be displayed by the statement

fnplt(f)

Its value at a is given by the statement

fnval(f,a);

Its second derivative is constructed by the statement

DDf = fnder(fnder(f));

or by the statement

DDf = fnder(f,2);

Its definite integral over the interval [a..b] is supplied by the statement

diff(fnval(fnint(f),[a;b]));

and the difference between the spline in cs and the one in ch can be computed
as

fncmb(cs,'-',sp);
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Vector-Valued Functions
The toolbox supports vector-valued splines. For example, if you want a spline
curve through given planar points , then the statements

xy = [x;y]; df = diff(xy,1,2);
t = cumsum([0, sqrt([1 1]*(df.*df))]);
cv = csapi(t,xy);

provide such a spline curve, using chord-length parametrization and cubic
spline interpolation with the not-a-knot end condition, as can be verified
by the statements

fnplt(cv), hold on, plot(x,y,'o'), hold off

If you then wanted to know the area enclosed by this curve, you would want to

evaluate the integral , with the point
on the curve corresponding to the parameter value . For the spline curve in
cv just constructed, this can be done exactly in one (somewhat complicated)
command:

area = diff(fnval(fnint( ...
fncmb(fncmb(cv,[0 1]),'*',fnder(fncmb(cv,[1 0]))) ...

),fnbrk(cv,'interval')));

To explain, y=fncmb(cv,[0 1]) picks out the second component of the curve
in cv, Dx=fnder(fncmb(cv,[1 0])) provides the derivative of the first
component, and yDx=fncmb(y,'*',Dx) constructs their pointwise product.
Then IyDx=fnint(yDx) constructs the indefinite integral of yDx and, finally,
diff(fnval(IyDx,fnbrk(cv,'interval'))) evaluates that indefinite
integral at the endpoints of the basic interval and then takes the difference of
the second from the first value, thus getting the definite integral of yDx over
its basic interval. Depending on whether the enclosed area is to the right or to
the left as the curve point travels with increasing parameter, the resulting
number is either positive or negative.

Further, all the values Y (if any) for which the point (X,Y) lies on the spline
curve in cv just constructed can be obtained by the following (somewhat
complicated) command:
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Y = fnval(fncmb(cv,[0 1]), ...
mean(fnzeros(fncmb(fncmb(cv,[1 0]),'-',X))));

To explain: x = fncmb(cv,[1 0]) picks out the first component of the
curve in cv; xmX = fncmb(x,'-',X) translates that component by X; t
= mean(fnzeros(xmX)) provides all the parameter values for which xmX
is zero, i.e., for which the first component of the curve equals X; y =
fncmb(cv,[0,1]) picks out the second component of the curve in cv; and,
finally, Y = fnval(y,t) evaluates that second component at those parameter
sites at which the first component of the curve in cv equals X.

As another example of the use of vector-valued functions, suppose that you
have solved the equations of motion of a particle in some specified force
field in the plane, obtaining, at discrete times , the position

as well as the velocity stored in the 4-vector , as
you would if, in the standard way, you had solved the equivalent first-order
system numerically. Then the following statement, which uses cubic Hermite
interpolation, will produce a plot of the particle path:

fnplt(spapi(augknt(t,4,2),t,reshape(z,2,2*n)))
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Fitting Values at N-D Grid
Vector-valued splines are also used in the approximation to gridded
data, in any number of variables, using tensor-product splines. The same
spline-construction commands are used, only the form of the input differs.
For example, if x is an m-vector, y is an n-vector, and z is an array of size
[m,n], then

cs = csapi({x,y},z);

describes a bicubic spline satisfying for ,
. Such a multivariate spline can be vector-valued. For example,

x = 0:4; y=-2:2; s2 = 1/sqrt(2);
z(3,:,:) = [0 1 s2 0 -s2 -1 0].'*[1 1 1 1 1];
z(2,:,:) = [1 0 s2 1 s2 0 -1].'*[0 1 0 -1 0];
z(1,:,:) = [1 0 s2 1 s2 0 -1].'*[1 0 -1 0 1];
sph = csape({x,y},z,{'clamped','periodic'});
fnplt(sph), axis equal, axis off

gives a perfectly acceptable sphere. Its projection onto the -plane is
plotted by

fnplt(fncmb(sph,[1 0 0; 0 0 1])), axis equal, axis off

Both plots are shown below.
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2 Some Simple Examples

A Sphere Made by a 3-D-Valued Bivariate Tensor Product Spline
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Planar Projection of Spline Sphere
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Fitting Values at Scattered 2-D Sites
Tensor-product splines are good for gridded (bivariate and even multivariate)
data. For work with scattered bivariate data, the toolbox provides the
thin-plate smoothing spline. Suppose you have given data values y(j) at
scattered data sites x(:,j), j=1:N, in the plane. To give a specific example,

n = 65; t = linspace(0,2*pi,n+1);
x = [cos(t);sin(t)]; x(:,end) = [0;0];

provides 65 sites, namely 64 points equally spaced on the unit circle, plus the
center of that circle. Here are corresponding data values, namely noisy values
of the very nice function .

y = (x(1,:)+.5).^2 + (x(2,:)+.5).^2;
noisy = y + (rand(size(y))-.5)/3;

Then you can compute a reasonable approximation to these data by

st = tpaps(x,noisy);

and plot the resulting approximation along with the noisy data by

fnplt(st); hold on
plot3(x(1,:),x(2,:),noisy,'wo','markerfacecolor','k')
hold off

and so produce the following picture:
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3 Splines: An Overview

Introduction
This chapter is meant to provide a quick overview of the mathematics that
underlies the various commands in the Spline Toolbox product. In the process,
the technical terms and notation used throughout this documentation (and in
the online help for individual commands) are introduced. Another source of
information about the latter is the Glossary.
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Polynomials vs. Splines

Polynomials vs. Splines
Polynomials are the approximating functions of choice when a smooth function
is to be approximated locally. For example, the truncated Taylor series

provides a satisfactory approximation for if is sufficiently smooth
and is sufficiently close to . But if a function is to be approximated on a
larger interval, the degree, , of the approximating polynomial may have to
be chosen unacceptably large. The alternative is to subdivide the interval

of approximation into sufficiently small intervals , with
, so that, on each such interval, a polynomial of

relatively low degree can provide a good approximation to . This can even
be done in such a way that the polynomial pieces blend smoothly, i.e., so
that the resulting patched or composite function that equals for

, all , has several continuous derivatives. Any such smooth
piecewise polynomial function is called a spline. I.J. Schoenberg coined this
term since a twice continuously differentiable cubic spline with sufficiently
small first derivative approximates the shape of a draftsman’s spline.

There are two commonly used ways to represent a polynomial spline, the
ppform and the B-form. In this toolbox, a spline in ppform is often referred to
as a piecewise polynomial, while a piecewise polynomial in B-form is often
referred to as a spline. This reflects the fact that piecewise polynomials and
(polynomial) splines are just two different views of the same thing.
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3 Splines: An Overview

ppform
The ppform of a polynomial spline of order provides a description in terms of
its breaks and the local polynomial coefficients of its pieces.

For example, a cubic spline is of order 4, corresponding to the fact that
it requires four coefficients to specify a cubic polynomial. The ppform is
convenient for the evaluation and other uses of a spline.
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B-form

B-form
The B-form has become the standard way to represent a spline during
its construction, since the B-form makes it easy to build in smoothness
requirements across breaks and leads to banded linear systems. The B-form
describes a spline as a weighted sum

of B-splines of the required order , with their number, , at least as big as
plus the number of polynomial pieces that make up the spline. Here,

is the th B-spline of order for the knot sequence
. In particular, is piecewise-polynomial of degree < ,

with breaks , is nonnegative, is zero outside the interval ,
and is so normalized that

3-5



3 Splines: An Overview

Knot Multiplicity
The multiplicity of the knots governs the smoothness, in the following way:
If the number τ occurs exactly times in the sequence , then
and its first derivatives are continuous across the break τ, while
the th derivative has a jump at τ. You can experiment with all these
properties of the B-spline in a very visual and interactive way using the
command bspligui.
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B-Spline Properties

Since is nonzero only on the interval , the linear system for
the B-spline coefficients of the spline to be determined, by interpolation or
least squares approximation, or even as the approximate solution of some
differential equation, is banded, making the solving of that linear system
particularly easy. For example, if a spline s of order with knot sequence

is to be constructed so that for , then
we are led to the linear system

for the unknown B-spline coefficients in which each equation has at most
nonzero entries.

Also, many theoretical facts concerning splines are most easily stated
and/or proved in terms of B-splines. For example, it is possible to match
arbitrary data at sites uniquely by a spline of order with knot
sequence if and only if for all (Schoenberg-Whitney
Conditions). Computations with B-splines are facilitated by stable recurrence
relations

that are also of help in the conversion from B-form to ppform. The dual
functional

provides a useful expression for the jth B-spline coefficient of the spline s in
terms of its value and derivatives at an arbitrary site τ between and ,
and with . It can be used to show
that is closely related to on the interval , and seems the most
efficient means for converting from ppform to B-form.
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Constructive vs. Variational
The above constructive approach is not the only avenue to splines. In the
variational approach, a spline is obtained as a best interpolant, e.g., as the
function with smallest th derivative among all those matching prescribed
function values at certain sites. As it turns out, among the many such
splines available, only those that are piecewise-polynomials or, perhaps,
piecewise-exponentials have found much use. Of particular practical interest
is the smoothing spline which, for given data with ,
all , and given corresponding positive weights , and for given smoothing
parameter p, minimizes

over all functions with derivatives. It turns out that the smoothing spline
is a spline of order with a break at every data site. The smoothing
parameter, p, is chosen artfully to strike the right balance between wanting
the error measure

small and wanting the roughness measure

small. The hope is that contains as much of the information, and as little
of the supposed noise, in the data as possible. One approach to this (used
in spaps) is to make as small as possible subject to the condition
that be no bigger than a prescribed tolerance. For computational
reasons, spaps uses the (equivalent) smoothing parameter , i.e.,
minimizes ρE(f) + F(Dmf). Also, it is useful at times to use the more flexible
roughness measure
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with a suitable positive weight function.
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Multivariate Splines
Multivariate splines can be obtained from univariate splines by the tensor
product construct. For example, a trivariate spline in B-form is given by

with univariate B-splines. Correspondingly, this spline is
of order in , of order in , and of order in . Similarly, the ppform of a
tensor-product spline is specified by break sequences in each of the variables
and, for each hyper-rectangle thereby specified, a coefficient array. Further,
as in the univariate case, the coefficients may be vectors, typically 2-vectors
or 3-vectors, making it possible to represent, e.g., certain surfaces in R3.

A very different bivariate spline is the thin-plate spline. This is a function of
the form

with the thin-plate spline basis function, and denoting
the Euclidean length of the vector . Here, for convenience, we denote the
independent variable by , but is now a vector whose two components,
and , play the role of the two independent variables earlier denoted and
. Correspondingly, the sites are points in .

Thin-plate splines arise as bivariate smoothing splines, meaning a thin-plate
spline minimizes

over all sufficiently smooth functions . Here, the are data values given at
the data sites , p is the smoothing parameter, and denotes the partial
derivative of with respect to . The integral is taken over the entire .

3-10



Multivariate Splines

The upper summation limit, , reflects the fact that 3 degrees of freedom
of the thin-plate spline are associated with its polynomial part.

Thin-plate splines are functions in stform, meaning that, up to certain
polynomial terms, they are a weighted sum of arbitrary or scattered translates

of one fixed function, . This so-called basis function for the thin-plate
spline is special in that it is radially symmetric, meaning that only
depends on the Euclidean length, , of . For that reason, thin-plate splines
are also known as RBFs or radial basis functions. See Chapter 8, “The stform”
for more information.
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Rational Splines
A rational spline is any function of the form r(x) = s(x)/w(x), with both s
and w splines and, in particular, w a scalar-valued spline, while s often
is vector-valued.

Rational splines are attractive since it is possible to describe various basic
geometric shapes, like conic sections, exactly as the range of a rational spline.
For example, a circle can so be described by a quadratic rational spline with
just two pieces.

In this toolbox, there is the additional requirement that both s and w be of
the same form and even of the same order, and with the same knot or break
sequence. This makes it possible to store the rational spline r as the ordinary
spline R whose value at x is the vector [s(x);w(x)]. Depending on whether the
two splines are in B-form or ppform, such a representation is called here the
rBform or the rpform of such a rational spline.

It is easy to obtain r from R. For example, if v is the value of R at x, then
v(1:end-1)/v(end) is the value of r at x. There are corresponding ways to
express derivatives of r in terms of derivatives of R.
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4 The ppform

Introduction
A univariate piecewise polynomial is specified by its break sequence breaks
and the coefficient array coefs of the local power form (see Equation 4-1
below) of its polynomial pieces; see Chapter 6, “Tensor Product Splines” for
a discussion of multivariate piecewise-polynomials. The coefficients may
be (column-)vectors, matrices, even ND-arrays. For simplicity, the present
discussion deals only with the case when the coefficients are scalars.

The break sequence is assumed to be strictly increasing,

breaks(1)
< breaks(2) < ... < breaks(l+1)

with l the number of polynomial pieces that make up .

While these polynomials may be of varying degrees, they are all recorded as
polynomials of the same order k, i.e., the coefficient array coefs is of size
[l,k], with coefs(j,:) containing the k coefficients in the local power
form for the jth polynomial piece, from the highest to the lowest power; see
Equation 4-1 below.
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ppform

ppform

The items breaks, coefs, l, and k, make up the ppform of , along with the
dimension d of its coefficients; usually d equals 1. The basic interval of this
form is the interval [breaks(1) .. breaks(l+1)]. It is the default interval
over which a function in ppform is plotted by the plot command fnplt.

In these terms, the precise description of the piecewise-polynomial is

= polyval(coefs(j,:), - breaks(j)) (4-1)

for .

Here, polyval(a,x) is the MATLAB function; it returns the number

This defines only for in the half-open interval [breaks(1)..breaks(l+1)).
For any other , is defined by

i.e., by extending the first, respectively last, polynomial piece. In this way, a
function in ppform has possible jumps, in its value and/or its derivatives, only
across the interior breaks, breaks(2:l). The end breaks, breaks([1,l+1]),
mainly serve to define the basic interval of the ppform.
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4 The ppform

Construction
A piecewise-polynomial is usually constructed by some command, through a
process of interpolation or approximation, or conversion from some other form
e.g., from the B-form, and is output as a variable. But it is also possible to
make one up from scratch, using the statement

pp
= ppmak(breaks,coefs)

For example, we might say pp=ppmak(-5:-1,-22:-11), or, more explicitly,

breaks = -5:-1;
coefs = -22:-11; pp = ppmak(breaks,coefs);

thus supplying the uniform break sequence -5:-1 and the coefficient sequence
-22:-11. Since this break sequence has 5 entries, hence 4 break intervals,
while the coefficient sequence has 12 entries, we have, in effect, specified a
piecewise-polynomial of order 3 (= 12/4). The command

fnbrk(pp)

prints out all the constituent parts of this piecewise-polynomial, as follows:

breaks(1:l+1)
-5 -4 -3 -2 -1 coefficients(d*l,k) -22 -21 -20 -19 -18

-17 -16 -15 -14 -13 -12 -11 pieces number l 4 order k
3 dimension d of target 1

Further, fnbrk can be used to supply each of these parts separately. But
the point of Spline Toolbox is that you usually need not concern yourself
with these details. You simply use pp as an argument to commands that
evaluate, differentiate, integrate, convert, or plot the piecewise-polynomial
whose description is contained in pp.
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Available Commands
Here are some operations you can perform on a piecewise-polynomial.

v = fnval(pp,x) Evaluates

dpp = fnder(pp) Differentiates

dirpp = fndir(pp,dir) Differentiates in the direction dir

ipp = fnint(pp) Integrates

fnmin(pp,[a,b]) Finds the minimum value in given
interval

fnzeros(pp,[a,b]) Finds the zeros in the given interval

pj = fnbrk(pp,j) Pulls out the jth polynomial piece

pc = fnbrk(pp,[a b]) Restricts/extends to the interval
[a..b]

po = fnxtr(pp,order) Extends outside its basic interval by
polynomial of specified order

fnplt(pp,[a,b]) Plots on given interval

sp = fn2fm(pp,'B-') Converts to B-form

pr = fnrfn(pp,morebreaks) Inserts additional breaks

Inserting additional breaks comes in handy when one wants to add two
piecewise-polynomials with different breaks, as is done in the command fncmb.

To illustrate the use of some of these commands, here is a plot of the particular
piecewise-polynomial we just made up. First, the basic plot:

x = linspace(-5.5,-.5,101);
plot(x, fnval(pp,x),'x')

Then add to the plot the breaklines:

breaks=fnbrk(pp,'b'); yy=axis; hold on
for j=1:fnbrk(pp,'l')+1

plot(breaks([j j]),yy(3:4))
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4 The ppform

end

Finally, superimpose on that plot the plot of the polynomial that supplies
the third polynomial piece:

plot(x,fnval(fnbrk(pp,3),x),'linew',1.3)
set(gca,'ylim',[-60 -10]), hold off
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A Piecewise-Polynomial Function, Its Breaks, and the Polynomial Giving
Its Third Piece

The figure above is the final picture. It shows the piecewise-polynomial as
a sequence of points and, solidly on top of it, the polynomial from which its
third polynomial piece is taken. It is quite noticeable that the value of a
piecewise-polynomial at a break is its limit from the right, and that the value
of the piecewise-polynomial outside its basic interval is obtained by extending
its leftmost, respectively its rightmost, polynomial piece.

While the ppform of a piecewise-polynomial is efficient for evaluation, the
construction of a piecewise-polynomial from some data is usually more
efficiently handled by determining first its B-form, i.e., its representation
as a linear combination of B-splines.
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5 The B-form

Introduction
A univariate spline f is specified by its nondecreasing knot sequence t and
by its B-spline coefficient sequence a — see Chapter 6, “Tensor Product
Splines” for a discussion of multivariate splines. The coefficients may be
(column-)vectors, matrices, even ND-arrays. When the coefficients are

2-vectors or 3-vectors, f is a curve in R2 or R3 and the coefficients are called
the control points for the curve.

Roughly speaking, such a spline is piecewise-polynomial of a certain order
and with breaks t(i). But knots are different from breaks in that they
may be repeated, i.e., t need not be strictly increasing. The resulting knot
multiplicities govern the smoothness of the spline across the knots, as detailed
below.

With [d,n] = size(a), and n+k = length(t), the spline is of order k. This
means that its polynomial pieces have degree < k. For example, a cubic
spline is a spline of order 4 since it takes four coefficients to specify a cubic
polynomial.
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B-form
These four items, t, a, n, and k, make up the B-form of the spline f.

This means, explicitly, that

with the th B-spline of order k for the given knot
sequence t, i.e., the B-spline with knots . The basic interval
of this B-form is the interval [t(1)..t(n+k)]. It is the default interval over
which a spline in B-form is plotted by the command fnplt. Note that a
spline in B-form is zero outside its basic interval while, after conversion to
ppform via fn2fm, this is usually not the case since, outside its basic interval,
a piecewise-polynomial is defined by extension of its first or last polynomial
piece. In particular, a function in B-form may have jumps in value and/or
one of its derivative not only across its interior knots, i.e., across with

, but also across its end knots, and .
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B-Splines
The building blocks for the B-form of a spline are the B-splines. A B-Spline
of Order 4, and the Four Cubic Polynomials from Which It Is Made on page
5-4 shows a picture of such a B-spline, the one with the knot sequence
[0 1.5 2.3 4 5], hence of order 4, together with the polynomials whose
pieces make up the B-spline. The information for that picture could be
generated by the command

bspline([0 1.5 2.3 4 5])

A B-Spline of Order 4, and the Four Cubic Polynomials from Which It Is Made

To summarize: The B-spline with knots is positive
on the interval and is zero outside that interval. It is
piecewise-polynomial of order k with breaks at the sites . These
knots may coincide, and the precise multiplicity governs the smoothness with
which the two polynomial pieces join there.
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Knot Multiplicity
The rule is

knot multiplicity + condition multiplicity = order

All Third-Order B-Splines for a Certain Knot Sequence with Various Knot
Multiplicities

For example, for a B-spline of order 3, a simple knot would mean two
smoothness conditions, i.e., continuity of function and first derivative, while a
double knot would only leave one smoothness condition, i.e., just continuity,
and a triple knot would leave no smoothness condition, i.e., even the function
would be discontinuous.

All Third-Order B-Splines for a Certain Knot Sequence with Various Knot
Multiplicities on page 5-5 shows a picture of all the third-order B-splines
for a certain mystery knot sequence t. The breaks are indicated by vertical
lines. For each break, try to determine its multiplicity in the knot sequence
(it is 1,2,1,1,3), as well as its multiplicity as a knot in each of the B-splines.
For example, the second break has multiplicity 2 but appears only with
multiplicity 1 in the third B-spline and not at all, i.e., with multiplicity 0, in
the last two B-splines. Note that only one of the B-splines shown has all its
knots simple. It is the only one having three different nontrivial polynomial
pieces. Note also that you can tell the knot-sequence multiplicity of a knot
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by the number of B-splines whose nonzero part begins or ends there. The
picture is generated by the following MATLAB statements, which use the
command spcol from this toolbox to generate the function values of all these
B-splines at a fine net x.

t=[0,1,1,3,4,6,6,6]; x=linspace(-1,7,81);
c=spcol(t,3,x);[l,m]=size(c);
c=c+ones(l,1)*[0:m-1];
axis([-1 7 0 m]); hold on
for tt=t, plot([tt tt],[0 m],'-'), end
plot(x,c,'linew',2), hold off, axis off

Further illustrated examples are provided by the demo “Intro to B-form”
available on the Demos tag in the MATLAB Help browser. You can also
use the GUI bspligui to study the dependence of a B-spline on its knots
experimentally.
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Choice of Knots
The rule “knot multiplicity + condition multiplicity = order” has the following
consequence for the process of choosing a knot sequence for the B-form of
a spline approximant. Suppose the spline is to be of order , with basic
interval , and with interior breaks . Suppose, further, that, at
, the spline is to satisfy smoothness conditions, i.e.,

Then, the appropriate knot sequence should contain the break exactly
times, . In addition, it should contain the two endpoints, and

, of the basic interval exactly times. This last requirement can be relaxed,
but has become standard. With this choice, there is exactly one way to write
each spline s with the properties described as a weighted sum of the B-splines
of order with knots a segment of the knot sequence . This is the reason for
the B in B-spline: B-splines are, in Schoenberg’s terminology, basic splines.

For example, if you want to generate the B-form of a cubic spline on the
interval [1 .. 3], with interior breaks 1.5, 1.8, 2.6, and with two continuous
derivatives, then the following would be the appropriate knot sequence:

t = [1, 1, 1, 1, 1.5, 1.8, 2.6, 3, 3, 3, 3];

This is supplied by augknt([1, 1.5, 1.8, 2.6, 3], 4). If you wanted,
instead, to allow for a corner at 1.8, i.e., a possible jump in the first derivative
there, you would triple the knot 1.8, i.e., use

t = [1, 1, 1, 1, 1.5, 1.8, 1.8, 1.8, 2.6, 3, 3, 3, 3];

and this is provided by the statement

t = augknt([1, 1.5, 1.8, 2.6, 3], 4, [1, 3, 1] );
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Splines
The shorthand

is one of several ways to indicate that is a spline of order k with knot
sequence t, i.e., a linear combination of the B-splines of order k for the knot
sequence t.

A word of caution: The term B-spline has been expropriated by the
Computer-Aided Geometric Design (CAGD) community to mean what is
called here a spline in B-form, with the unhappy result that, in any discussion
between mathematicians/approximation theorists and people in CAGD, one
now always has to check in what sense the term is being used.
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Construction
Usually, a spline is constructed from some information, like function values
and/or derivative values, or as the approximate solution of some ordinary
differential equation. But it is also possible to make up a spline from scratch,
by providing its knot sequence and its coefficient sequence to the command
spmak.

For example, we might say

sp = spmak(1:10,3:8);

thus supplying the uniform knot sequence 1:10 and the coefficient sequence
3:8. Since there are 10 knots and 6 coefficients, the order must be 4(= 10 - 6),
i.e., we get a cubic spline. The command

fnbrk(sp)

prints out the constituent parts of the B-form of this cubic spline, as follows:

knots(1:n+k)
1 2 3 4 5 6 7 8 9 10

coefficients(d,n)
3 4 5 6 7 8

number n of coefficients
6

order k
4

dimension d of target
1

Further, fnbrk can be used to supply each of these parts separately.

But the point of the Spline Toolbox product is that there shouldn’t be any
need for you to look up these details. You simply use sp as an argument to
commands that evaluate, differentiate, integrate, convert, or plot the spline
whose description is contained in sp.
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5 The B-form

Example: A Spline Curve
As another simple example,

points = .95*[0 -1 0 1;1 0 -1 0];
sp = spmak(-4:8,[points points]);

provides a planar, quartic, spline curve whose middle part is a pretty good
approximation to a circle, as the plot on the next page shows. It is generated
by a subsequent

plot(points(1,:),points(2,:),'x'), hold on
fnplt(sp,[0,4]), axis equal square, hold off

Insertion of additional control points would make a
visually perfect circle.

Here are more details. The spline curve generated has

the form , with -4:8 the uniform knot
sequence, and with its control points the sequence

with . Only
the curve part between the parameter values 0 and 4 is actually plotted.

To get a feeling for how close to circular this part of the curve actually is, we
compute its unsigned curvature. The curvature at the curve point of a
space curve can be computed from the formula

in which is the Euclidean length of the 3-vector a, and is the cross
product of the two 3-vectors a and b, and and are the first and second
derivative of the curve with respect to the parameter used. We treat our
planar curve as a space curve in the -plane, hence obtain the maximum
and minimum of its curvature at 21 points as follows:

t = linspace(0,4,21);zt = zeros(size(t));
dsp = fnder(sp); dspt = fnval(dsp,t); ddspt = fnval(fnder(dsp),t);
kappa = abs(dspt(1,:).*ddspt(2,:)-dspt(2,:).*ddspt(1,:))./...

(sum(dspt.^2)).^(3/2);
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Example: A Spline Curve

[min(kappa),max(kappa)]

ans =
1.6747 1.8611

So, while the curvature is not quite constant, it is close to 1/radius of the
circle, as we see from the next calculation:

1/norm(fnval(sp,0))

ans =
1.7864
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5 The B-form

Available Commands
The following commands are available for spline work. There is spmak and
fnbrk to make up a spline and take it apart again. Use fn2fm to convert from
B-form to ppform. You can evaluate, differentiate, integrate, minimize, find
zeros of, plot, refine, or selectively extrapolate a spline with the aid of fnval,
fnder, fndir, fnint, fnmin, fnzeros, fnplt, fnrfn, and fnxtr.

There are five commands for generating knot sequences:

• augknt for providing boundary knots and also controlling the multiplicity
of interior knots

• brk2knt for supplying a knot sequence with specified multiplicities

• aptknt for providing a knot sequence for a spline space of given order that
is suitable for interpolation at given data sites

• optknt for providing an optimal knot sequence for interpolation at given
sites

• newknt for a knot sequence perhaps more suitable for the function to be
approximated

In addition, there is:

• aveknt to supply certain knot averages (the Greville sites) as recommended
sites for interpolation

• chbpnt to supply such sites

• knt2brk and knt2mlt for extracting the breaks and/or their multiplicities
from a given knot sequence

To display a spline curve with given two-dimensional coefficient sequence and
a uniform knot sequence, use spcrv.

You can also write your own spline construction commands, in which
case you will need to know the following. The construction of a spline
satisfying some interpolation or approximation conditions usually requires a
collocation matrix, i.e., the matrix that, in each row, contains the sequence

of numbers , i.e., the rth derivative at of the th B-spline, for
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all , for some and some site . Such a matrix is provided by spcol. An
optional argument allows for this matrix to be supplied by spcol in a
space-saving spline-almost-block-diagonal-form or as a MATLAB sparse
matrix. It can be fed to slvblk, a command for solving linear systems with
an almost-block-diagonal coefficient matrix. If you are interested in seeing
how spcol and slvblk are used in this toolbox, have a look at the commands
spapi, spap2, and spaps.

In addition, there are routines for constructing cubic splines. csapi and
csape provide the cubic spline interpolant at knots to given data, using the
not-a-knot and various other end conditions, respectively. A parametric cubic
spline curve through given points is provided by cscvn. The cubic smoothing
spline is constructed in csaps.

The remaining commands involving the B-form are utilities, of no interest to
the casual user.
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6 Tensor Product Splines

Introduction
The toolbox provides (polynomial) spline functions in any number of variables,
as tensor products of univariate splines. These multivariate splines come in
both standard forms, the B-form and the ppform, and their construction and
use parallels entirely that of the univariate splines discussed in previous
sections, Chapter 4, “The ppform” and Chapter 5, “The B-form” The same
commands are used for their construction and use.

For simplicity, the following discussion deals just with bivariate splines.
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B-form
The tensor-product idea is very simple. If is a function of , and is a
function of , then their tensor-product is a function of
and , i.e., a bivariate function. More generally, with

and knot sequences and a
corresponding coefficient array, we obtain a bivariate spline as

The B-form of this spline comprises the cell array of its knot sequences,
the coefficient array , the numbers vector , and the orders vector

. The command

sp = spmak( );

constructs this form. Further, fnplt, fnval, fnder, fndir, fnrfn, and fn2fm
can be used to plot, evaluate, differentiate and integrate, refine, and convert
this form.
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Construction and Use
You are most likely to construct such a form by looking for an interpolant
or approximant to gridded data. For example, if you know the values

, of some function at all the points in a
rectangular grid, then, assuming that the strictly increasing sequence x
satisfies the Schoenberg-Whitney conditions with respect to the above
knot sequence , and that the strictly increasing sequence y satisfies the
Schoenberg-Whitney conditions with respect to the above knot sequence
, the command

constructs the unique bivariate spline of the above form that matches
the given values. The command fnplt(sp) gives you a quick plot of this
interpolant. The command pp = fn2fm(sp,'pp') gives you the ppform of
this spline, which is probably what you want when you want to evaluate the
spline at a fine grid ((xx(i),yy(j)) for i=1:M, j=1:N), by the command:

values = fnval(pp,{xx,yy});
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ppform
The ppform of such a bivariate spline comprises, analogously, a cell array of
break sequences, a multidimensional coefficient array, a vector of number
pieces, and a vector of polynomial orders. Fortunately, the toolbox is set up
in such a way that there is usually no reason for you to concern yourself
with these details of either form. You use interpolation, approximation, or
smoothing to construct splines, and then use the fn... commands to make
use of them.
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Example: The Mobius Band
Here is an example of a surface constructed as a 3-D-valued bivariate spline.
The surface is the famous Möbius band, obtainable by taking a longish strip
of paper and gluing its narrow ends together, but with a twist. The figure is
obtained by the following commands:

x = 0:1; y = 0:4; h = 1/4; o2 = 1/sqrt(2); s = 2; ss = 4;
v(3,:,:) = h*[0, -1, -o2, 0, o2, 1, 0;0, 1, o2, 0, -o2, -1, 0];
v(2,:,:) = [ss, 0, s-h*o2, 0, -s-h*o2, 0, ss;...

ss, 0, s+h*o2, 0,-s+h*o2, 0, ss];
v(1,:,:) = s*[0, 1, 0, -1+h, 0, 1, 0; 0, 1, 0, -1-h, 0, 1, 0];
cs = csape({x,y},v,{'variational','clamped'});
fnplt(cs), axis([-2 2 -2.5 2.5 -.5 .5]), shading interp
axis off, hold on
values = squeeze(fnval(cs,{1,linspace(y(1),y(end),51)}));
plot3(values(1,:), values(2,:), values(3,:),'k','linew',2)
view(-149,28), hold off

A Möbius Band Made by Vector-Valued Bivariate Spline Interpolation
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7 NURBS and Other Rational Splines

Introduction
A rational spline is, by definition, any function that is the ratio of two splines:

This requires to be scalar-valued, but is often chosen to be vector-valued.
Further, it is desirable that be not zero for any of interest.

Rational splines are popular because, in contrast to ordinary splines, they can
be used to describe certain basic design shapes, like conic sections, exactly.
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Example: Circle
For example,

circle = rsmak('circle');

provides a rational spline whose values on its basic interval trace out the unit
circle, i.e., the circle of radius 1 with center at the origin, as the command

fnplt(circle), axis square

readily shows; the resulting output is the circle in A Circle and an Ellipse,
Both Given By a Rational Spline on page 7-3.
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A Circle and an Ellipse, Both Given By a Rational Spline

It is easy to manipulate this circle to obtain related shapes. For example, the
next commands stretch the circle into an ellipse, rotate the ellipse 45 degrees,
and translate it by (1,1), and then plot it on top of the circle.

ellipse = fncmb(circle,[2 0;0 1]);
s45 = 1/sqrt(2);
rtellipse = fncmb(fncmb(ellipse, [s45 -s45;s45 s45]), [1;1] );
hold on, fnplt(rtellipse), hold off

As a further example, the "circle" just constructed is put together from four
pieces. We highlight the first such piece, by the following commands:

quarter = fnbrk(fn2fm(circle,'rp'),1);
hold on, fnplt(quarter,3), hold off
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In the first command, fn2fm is used to change forms, from one based on the
B-form to one based on the ppform, and then fnbrk is used to extract the
first piece, and this piece is then plotted on top of the circle in A Circle and
an Ellipse, Both Given By a Rational Spline on page 7-3, with linewidth 3
to make it stand out.
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Example: Sphere
As a surface example, the command rsmak('southcap') provides a 3-vector
valued rational bicubic polynomial whose values on the unit square [-1 .. 1]^2
fill out a piece of the unit sphere. Adjoin to it five suitable rotates of it and
you get the unit sphere exactly. For illustration, the following commands
generate 2/3 of that sphere, as shown in Part of a Sphere Formed by Four
Rotates of a Quartic Rational on page 7-5.

southcap = rsmak('southcap'); fnplt(southcap)
xpcap = fncmb(southcap,[0 0 -1;0 1 0;1 0 0]);
ypcap = fncmb(xpcap,[0 -1 0; 1 0 0; 0 0 1]);
northcap = fncmb(southcap,-1);
hold on, fnplt(xpcap), fnplt(ypcap), fnplt(northcap)
axis equal, shading interp, view(-115,10), axis off, hold off

Part of a Sphere Formed by Four Rotates of a Quartic Rational
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rsform: rpform, rBform

Offhand, the two splines, and , in the rational spline
need not be related to one another. They could even be of different forms. But,
in the context of this toolbox, it is convenient to restrict them to be of the
same form, and even of the same order and with the same breaks or knots.
For, under that assumption, we can (and do) represent such a rational spline
by the (vector-valued) spline function

whose values are vectors with one more entry than the values of the rational
spline , and call this the rsform of the rational spline, or, more precisely, the
rpform or rBform, depending on whether and are in ppform or in B-form.
Internally, the only thing that distinguishes these rational forms from their
corresponding ordinary spline forms, rpform and B-form, is their form part,
i.e., the string obtained via fnbrk(r,'form'). This is enough to alert the
fn... commands to act appropriately on a function in one of the rsforms.

For example, as is done in fnval, it is very easy to obtain from . If v
is the value of at , then v(1:end-1)/v(end) is the value of at . If, in
addition, dv is , then (dv(1:end-1)-dv(end)*v(1:end-1))/v(end) is

. More generally, by Leibniz’s formula,

Therefore,

This shows that we can compute the derivatives of inductively, using the
derivatives of and (i.e., the derivatives of ) along with the derivatives of
of order less than to compute the th derivative of . This inductive scheme
is used in fntlr to provide the first so many derivatives of a rational spline.
There is a corresponding formula for partial and directional derivatives for
multivariate rational splines.
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Available Commands
Having chosen to represent the rational spline in this way by the
ordinary spline makes it is easy to apply to a rational spline all the
fn... commands in the Spline Toolbox product, with the following exceptions.
The integral of a rational spline need not be a rational spline, hence there
is no way to extend fnint to rational splines. The derivative of a rational
spline is again a rational spline but one of roughly twice the order. For that
reason, fnder and fndir will not touch rational splines. Instead, there is the
command fntlr for computing the value at a given x of all derivatives up
to a given order of a given function. If that function is rational, the needed
calculation is based on the considerations given in the preceding paragraph.

The command r = rsmak(shape) provides rational splines in rBform that
describe exactly certain standard geometric shapes , like 'circle', 'arc',
'cylinder', 'sphere', 'cone', 'torus'. The command fncmb(r,trans)
can be used to apply standard transformations to the resulting shape. For
example, if trans is a column-vector of the right length, the shape would be
translated by that vector while, if trans is a suitable matrix like a rotation,
the shape would be transformed by that matrix.

The command r = rscvn(p) constructs the quadratic rBform of a
tangent-continuous curve made up of circular arcs and passing through the
given sequence, p, of points in the plane.

A special rational spline form, called a NURBS, has become a standard tool in
CAGD. A NURBS is, by definition, any rational spline for which both and
are in the same B-form, with each coefficient for containing explicitly the
corresponding coefficient for as a factor:

The normalized coefficients for the numerator spline are more readily
used as control points than the unnormalized coefficients used in the
rBform. Nevertheless, this toolbox provides no special NURBS form, but only
the more general rational spline, but in both B-form (called rBform internally)
and in ppform (called rpform internally).
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The rational spline circle used earlier is put together in rsmak by code like
the following.

x = [1 1 0 -1 -1 -1 0 1 1]; y = [0 1 1 1 0 -1 -1 -1 0];
s45 = 1/sqrt(2); w =[1 s45 1 s45 1 s45 1 s45 1];
circle = rsmak(augknt(0:4,3,2), [w.*x;w.*y;w]);

Note the appearance of the denominator spline as the last component. Also
note how the coefficients of the denominator spline appear here explicitly
as factors of the corresponding coefficients of the numerator spline. The
normalized coefficient sequence [x;y] is very simple; it consists of the vertices
and midpoints, in proper order, of the "unit square". The resulting control
polygon is tangent to the circle at the places where the four quadratic pieces
that form the circle abut.

For a thorough discussion of NURBS, see [G. Farin, NURBS, 2nd ed.,
AKPeters Ltd, 1999] or [Les Piegl and Wayne Tiller, The NURBS Book, 2nd
ed., Springer-Verlag, 1997].
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8 The stform

Introduction
A multivariate function form quite different from the tensor-product construct
is the scattered translates form, or stform for short. As the name suggests,
it uses arbitrary or scattered translates of one fixed function ψ,
in addition to some polynomial terms. Explicitly, such a form describes a
function

in terms of the basis function , a sequence of sites called centers and a
corresponding sequence of coefficients, with the final coefficients,

, involved in the polynomial part, p.

When the basis function is radially symmetric, meaning that depends
only on the Euclidean length of its argument, , then is called a radial
basis function, and, correspondingly, is then often called an RBF.

At present, the toolbox works with just one kind of stform, namely
a bivariate thin-plate spline and its first partial derivatives. For the
thin-plate spline, the basis function is , with ,
i.e., a radial basis function. Its polynomial part is a linear polynomial, i.e.,

. The first partial derivative with respect to

its first argument uses, correspondingly, the basis function ,
with and , and .
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Properties of the stform
A function in stform can be put together from its center sequence centers
and its coefficient sequence coefs by the command

f = stmak(centers, coefs, type);

with the string type one of 'tp00', 'tp10', 'tp01', to indicate, respectively,
a thin-plate spline, a first partial of a thin-plate spline with respect to the
first argument, and a first partial of a thin-plate spline with respect to the
second argument. There is one other choice, 'tp'; it denotes a thin-plate
spline without any polynomial part and is likely to be used only during the
construction of a thin-plate spline, as in tpaps.

A function in stform depends linearly on its coefficients, meaning that

with either a translate of the basis function or else some polynomial.
Suppose you wanted to determine these coefficients so that the function
matches prescribed values at prescribed sites . Then you would need

the collocation matrix . You can obtain this matrix by the command
stcol(centers,x,type). In fact, since the stform has as the th column,
coefs(:,j), of its coefficient array, it is worth noting that stcol can also
supply the transpose of the collocation matrix. Thus, the command

values = coefs*stcol(centers,x,type,'tr');

would provide the values at the entries of x of the st function specified by
centers and type.

The stform is attractive since, in contrast to piecewise polynomial forms,
its complexity is the same in any number of variables. It is quite simple,
yet, because of the complete freedom in the choice of centers, very flexible
and adaptable.

On the negative side, the most attractive choices for a radial basis function
share with the thin-plate spline that the evaluation at any site involves
all coefficients. For example, plotting a scalar-valued thin-plate spline via
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fnplt involves evaluation at a 51-by-51 grid of sites, a nontrivial task when
there are 1000 coefficients or more. The situation is worse when we want to
determine these 1000 coefficients so as to obtain the stform of a function
that matches function values at 1000 data sites, as this calls for solving a
full linear system of order 1000, a task requiring O(10^9) flops if done by a
direct method. Just the construction of the collocation matrix for this linear
system (by stcol) takes O(10^6) flops.

The command tpaps, which constructs thin-plate spline interpolants and
approximants, uses iterative methods when there are more than 728 data
points, but convergence of such iteration may be slow.
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Available Commands
Once you have constructed an approximating or interpolating thin-plate
spline st with the aid of tpaps (or directly via stmak), you can use fnbrk to
obtain its parts or change its basic interval, fnval to evaluate it, fnplt to
plot it, and fnder to construct its two first partial derivatives, but no higher
order derivatives as they become infinite at the centers. This is just one
indication that the stform is quite different in nature from the other forms
in this toolbox, hence other fn... commands by and large don’t work with
stforms. For example, it makes no sense to use fnjmp, and fnmin or fnzeros
only work for univariate functions. It also makes no sense to use fnint on a
function in stform since such functions cannot be integrated in closed form.
The command Ast = fncmb(st,A) can be used on st, provided A is something
that can be applied to the values of the function described by st. For example,
A might be 'sin', in which case Ast is the stform of the function whose
coefficients are the sine of the coefficients of st. In effect, Ast describes the
function obtained by composing A with st. But, because of the singularities
in the higher-order derivatives of a thin-plate spline, there seems little point
to make fndir or fntlr applicable to such a st.
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Least-Squares Approximation by “Natural” Cubic Splines
The construction of a least-squares approximant usually requires that one
have in hand a basis for the space from which the data are to be approximated.
As the example of the space of “natural” cubic splines illustrates, the explicit
construction of a basis is not always straightforward.

This section makes clear that an explicit basis is not actually needed; it is
sufficient to have available some means of interpolating in some fashion from
the space of approximants. For this, the fact that the Spline Toolbox product
supports work with vector-valued functions is essential.

This section discusses these aspects of least-squares approximation by
“natural” cubic splines.

• “Problem” on page 9-2

• “General Resolution” on page 9-2

• “Need for a Basis Map” on page 9-3

• “A Basis Map for “Natural” Cubic Splines” on page 9-3

• “The One-line Solution” on page 9-4

• “The Need for Proper Extrapolation” on page 9-4

• “The Correct One-Line Solution” on page 9-6

• “Least-Squares Approximation by Cubic Splines” on page 9-7

Problem
You want to construct the least-squares approximation to given data (x,y) from
the space S of “natural” cubic splines with given breaks b(1) < ...< b(l+1).

General Resolution
If you know a basis, (f1,f2,...,fm), for the linear space S of all “natural” cubic
splines with break sequence b, then you have learned to find the least-squares
approximation in the form c(1)f1+ c(2)f2+ ... + c(m)fm, with the vector
c the least-squares solution to the linear system A? = y, whose coefficient
matrix is given by
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A(i,j) = fj(x(i)), i=1:length(x), j=1:m .

In other words, c = A\y.

Need for a Basis Map
The general solution seems to require that you know a basis. However, in
order to construct the coefficient sequence c, you only need to know the matrix
A. For this, it is sufficient to have at hand a basis map, namely an M-file, F
say, so that F(c) returns the spline given by the particular weighted sum
c(1)f1+c(2)f2+... +c(m)fm. For, with that, you can obtain, for j=1:m, the
j-th column of A as fnval(F(ej),x), with ej the j-th column of eye(m),
the identity matrix of order m.

Better yet, the Spline Toolbox product can handle vector-valued functions,
so you should be able to construct the basis map F to handle vector-valued
coefficients c(i) as well. However, by agreement, in this toolbox, a
vector-valued coefficient is a column vector, hence the sequence c is
necessarily a row vector of column vectors, i.e., a matrix. With that,
F(eye(m)) is the vector-valued spline whose i-th component is the basis
element fi, i=1:m. Hence, assuming the vector x of data sites to be a row
vector, fnval(F(eye(m)),x) is the matrix whose (i,j)-entry is the value of
fi at x(j), i.e., the transpose of the matrix A you are seeking. On the other
hand, as just pointed out, your basis map F expects the coefficient sequence
c to be a row vector, i.e., the transpose of the vector A\y. Hence, assuming,
correspondingly, the vector y of data values to be a row vector, you can obtain
the least-squares approximation from S to data (x,y) as

F(y/fnval(F(eye(m)),x))

To be sure, if you wanted to be prepared for x and y to be arbitrary vectors (of
the same length), you would use instead

F(y(:).'/fnval(F(eye(m)),x(:).'))

A Basis Map for “Natural” Cubic Splines
What exactly is required of a basis map F for the linear space S of “natural”
cubic splines with break sequence b(1) < ... < b(l+1)? Assuming, as we
did, the dimension of this linear space to be m, the map F should set up a
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linear one-to-one correspondence between m-vectors and elements of S. But
that is exactly what csape(b, . ,'var') does.

To be explicit, consider the following M-file F:

function s = F(c)
s = csape(b,c,'var');

For given vector c (of the same length as b), it provides the unique “natural”
cubic spline with break sequence b that takes the value c(i) at b(i),
i=1:l+1. The uniqueness is key. It ensures that the correspondence between
the vector c and the resulting spline F(c) is one-to-one. In particular, m
equals length(b). More than that, since the value f(t) of a function f at a
point t depends linearly on f, this uniqueness ensures that F(c) depends
linearly on c (since c equals fnval(F(c),b) and the inverse of an invertible
linear map is again a linear map).

The One-line Solution
Putting it all together, you arrive at the following code

csape(b,y(:).'/fnval(csape(b,eye(length(b)),'var'),x(:).'),...
'var')

for the least-squares approximation by “natural” cubic splines with break
sequence b.

The Need for Proper Extrapolation
Let’s try it on some data, the census data, say, which is provided in MATLAB
by the command

load census

and which supplies the years, 1790:10:1990, as cdate and the values as pop.
We use the break sequence 1810:40:1970 .

b = 1810:40:1970; s = csape(b, ...
pop(:)'/fnval(csape(b,eye(length(b)),'var'),cdate(:)'),'var');
fnplt(s, [1750,2050],2.2), hold on, plot(cdate,pop,'or')
set(gca,'Fontsize',16), hold off
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Have a look at Least-squares Approximation by “Natural” Cubic Splines
With 3 interior breaks on page 9-6 which shows, in thick blue, the resulting
approximation, along with the given data.

This looks like a good approximation, -- except that it doesn’t look like a
“natural” cubic spline. A “natural” cubic spline, to recall, must be linear to the
left of its first break and to the right of its last break, and this approximation
satisfies neither condition. This is due to the following facts.

The “natural” cubic spline interpolant to given data is provided by csape in
ppform, with the interval spanned by the data sites its basic interval. On
the other hand, evaluation of a ppform outside its basic interval is done, in
MATLAB ppval or Spline Toolbox fnval, by using the relevant polynomial
end piece of the ppform, i.e., by full-order extrapolation. In case of a “natural”
cubic spline, you want instead second-order extrapolation. This means that
you want, to the left of the first break, the straight line that agrees with the
cubic spline in value and slope at the first break. Such an extrapolation is
provided by fnxtr. Since the “natural” cubic spline has zero second derivative
at its first break, such an extrapolation is even third-order, i.e., it satisfies
three matching conditions. In the same way, beyond the last break of the
cubic spline, you want the straight line that agrees with the spline in value
and slope at the last break, and this, too, is supplied by fnxtr.
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Least-squares Approximation by “Natural” Cubic Splines With 3 interior
breaks

The Correct One-Line Solution
The following one-line code provides the correct least-squares approximation
to data (x,y) by “natural” cubic splines with break sequence b:

fnxtr(csape(b,y(:).'/ ...
fnval(fnxtr(csape(b,eye(length(b)),'var')),x(:).'),'var'))

But it is, admittedly, a rather long line.

The following code uses this correct formula and plots, in a thinner, red
line, the resulting approximation on top of the earlier plots, as shown in
Least-squares Approximation by “Natural” Cubic Splines With 3 interior
breaks on page 9-6.

ss = fnxtr(csape(b,pop(:)'/ ...
fnval(fnxtr(csape(b,eye(length(b)),'var')),cdate(:)'),'var'));

hold on, fnplt(ss,[1750,2050],1.2,'r'),grid, hold off
legend('incorrect approximation','population', ...
'correct approximation')
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Least-Squares Approximation by Cubic Splines
The one-line solution works perfectly if you want to approximate by the space
S of all cubic splines with the given break sequence b. You don’t even have to
use the Spline Toolbox product for this since you can rely on the MATLAB
spline. You know that, with c a sequence containing two more entries than
does b, spline(b,c) provides the unique cubic spline with break sequence b
that takes the value c(i+1) at b(i), all i, and takes the slope c(1) at b(1),
and the slope c(end) at b(end). Hence, spline(b,.) is a basis map for S.

More than that, you know that spline(b,c,xi) provides the value(s) at
xi of this interpolating spline. Finally, you know that spline can handle
vector-valued data. Therefore, the following one-line code constructs the
least-squares approximation by cubic splines with break sequence b to data
(x,y) :

spline(b,y(:)'/spline(b,eye(length(b)),x(:)'))
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A Nonlinear ODE
This section discusses these aspects of a nonlinear ODE problem:

• “Problem” on page 9-8

• “Approximation Space” on page 9-8

• “Discretization” on page 9-9

• “Numerical Problem” on page 9-9

• “Linearization” on page 9-10

• “Linear System to Be Solved” on page 9-10

• “Iteration” on page 9-11

The example can be run via the demo “Solving a Nonlinear ODE with a
Boundary Layer by Collocation”.

Problem
We consider the nonlinear singularly perturbed problem:

Approximation Space
We seek an approximate solution by collocation from piecewise cubics with
a suitable break sequence; for instance,

breaks = (0:4)/4;

Since cubics are of order 4, we have

k = 4;

We obtain the corresponding knot sequence as

knots = augknt(breaks,k,2);
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This gives a quadruple knot at both 0 and 1, which is consistent with the fact
that we have cubics, i.e., have order 4.

This implies that we have

n = length(knots)-k;
n = 10;

i.e., 10 degrees of freedom.

Discretization
We collocate at two sites per polynomial piece, i.e., at eight sites altogether.
This, together with the two side conditions, gives us 10 conditions, which
matches the 10 degrees of freedom.

We choose the two Gaussian sites for each interval. For the standard interval
[-.5,.5] of length 1, these are the two sites

gauss = .5773502692*[-1/2; 1/2];

From this, we obtain the whole collection of collocation sites by

ninterv = length(breaks)-1;
temp = ((breaks(2:ninterv+1)+breaks(1:ninterv))/2);
temp = temp([1 1],:) + gauss*diff(breaks);
colsites = temp(:).';

Numerical Problem
With this, the numerical problem we want to solve is to find that
satisfies the nonlinear system

Dy

y x D y x x
y

( )

( ( )) ( )
( )

0 0

1
1 0

2 2

=

+ = ∈
=

  for   colsites
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Linearization
If is our current approximation to the solution, then the linear problem for
the supposedly better solution by Newton’s method reads

Dz

w x z x D z x b x x

z

( )

( ) ( ) ( ) ( )

0 0

0
2

=

+ = ∈  for   colsites
(1)=0

with , . In fact, by choosing

w w

w x w x x
0 1

1 2

1 1 0 1
0

( ) : , ( ) :
( ) : , ( ) :

= =
= = ∈

 
  for  colsites

and choosing all other values of not yet specified to be zero, we
can give our system the uniform shape

with

sites = [0,colsites,1];

Linear System to Be Solved
Since , we convert this last system into a system for the B-spline
coefficients of . This requires the values, first, and second derivatives at
every and for all the relevant B-splines. The command spcol was
expressly written for this purpose.

We use spcol to supply the matrix

colmat = ...
spcol(knots,k,brk2knt(sites,3));

From this, we get the collocation matrix by combining the row triple of colmat
for using the weights to get the row for of the actual
matrix. For this, we need a current approximation . Initially, we get it by
interpolating some reasonable initial guess from our piecewise-polynomial
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space at the sites. We use the parabola x2 1− , which satisfies the end
conditions as the initial guess, and pick the matrix from the full matrix
colmat. Here it is, in several cautious steps:

intmat = colmat([2 1+(1:(n-2))*3,1+(n-1)*3],:);
coefs = intmat\[0 colsites.*colsites-1 0].';
y = spmak(knots,coefs.');

Iteration
We can now complete the construction and solution of the linear system for
the improved approximate solution z from our current guess y. In fact, with
the initial guess y available, we now set up an iteration, to be terminated
when the change is small enough. We choose a relatively mild .

tolerance = 6.e-9;
epsilon = .1;
while 1

vtau = fnval(y,colsites);
weights=[0 1 0;

[2*vtau.' zeros(n-2,1) repmat(epsilon,n-2,1)];
1 0 0];

colloc = zeros(n,n);
for j=1:n

colloc(j,:) = weights(j,:)*colmat(3*(j-1)+(1:3),:);
end
coefs = colloc\[0 vtau.*vtau+1 0].';
z = spmak(knots,coefs.');
fnplt(z,'k');
maxdif = max(max(abs(z.coefs-y.coefs)));
fprintf('maxdif = %g\n',maxdif)
if (maxdif<tolerance), break, end

% now reiterate
y = z;

end
legend({'Initial Guess (x^2-1)' 'Iterates'},'location','NW');

The resulting printout of the errors is:

maxdif = 0.206695
maxdif = 0.01207
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maxdif = 3.95151e-005
maxdif = 4.43216e-010

If we now decrease , we create more of a boundary layer near the right
endpoint, and this calls for a nonuniform mesh.

We use newknt to construct an appropriate finer mesh from the current
approximation:

knots = newknt(z, ninterv+1); breaks = knt2brk(knots);
knots = augknt(breaks,4,2);
n = length(knots)-k;

From the new break sequence, we generate the new collocation site sequence:

ninterv = length(breaks)-1;
temp = ((breaks(2:ninterv+1)+breaks(1:ninterv))/2);
temp = temp([1 1], :) + gauss*diff(breaks);
colpnts = temp(:).';
sites = [0,colpnts,1];

We use spcol to supply the matrix

colmat = spcol(knots,k,sort([sites sites sites]));

and use our current approximate solution z as the initial guess:

intmat = colmat([2 1+(1:(n-2))*3,1+(n-1)*3],:);
y = spmak(knots,[0 fnval(z,colpnts) 0]/intmat.');

Thus set up, we cut by 3 and repeat the earlier calculation, starting with
the statements

tolerance=1.e-9;
while 1

vtau=fnval(y,colpnts);
.
.
.
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Repeated passes through this process generate a sequence of solutions, for
= 1/10, 1/30, 1/90, 1/270, 1/810. The resulting solutions, ever flatter at 0 and
ever steeper at 1, are shown in the plot above. The plot also shows the final
break sequence, as a sequence of vertical bars.

In this example, at least, newknt has performed satisfactorily.
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Construction of the Chebyshev Spline
This section discusses these aspects of the Chebyshev spline construction:

• “What Is a Chebyshev Spline?” on page 9-14

• “Choice of Spline Space” on page 9-14

• “Initial Guess” on page 9-15

• “Remez Iteration” on page 9-16

What Is a Chebyshev Spline?
The Chebyshev spline of order for the knot sequence

is the unique element of of max-norm 1 that
maximally oscillates on the interval and is positive near .
This means that there is a unique strictly increasing -sequence so that

the function given by , all , has max-norm 1
on . This implies that , and that ,
all . In fact, , all . This brings up the point that the knot
sequence is assumed to make such an inequality possible, i.e., the elements of

are assumed to be continuous.

In short, the Chebyshev spline looks just like the Chebyshev polynomial. It
performs similar functions. For example, its extreme sites are particularly
good sites to interpolate at from since the norm of the resulting projector
is about as small as can be; see the toolbox command chbpnt.

In this example, which can be run via the demo “Construction of the
Chebyshev Spline”, we try to construct for a particular knot sequence .

Choice of Spline Space
We deal with cubic splines, i.e., with order

k = 4;

and use the break sequence

breaks = [0 1 1.1 3 5 5.5 7 7.1 7.2 8];
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lp1 = length(breaks);

and use simple interior knots, i.e., use the knot sequence

t = breaks([ones(1,k) 2:(lp1-1) lp1(:,ones(1,k))]);

Note the quadruple knot at each end. Since k = 4, this makes
[0..8] = [breaks(1)..breaks(lp1)] the interval of interest, with
n = length(t)-k the dimension of the resulting spline space . The same
knot sequence would have been supplied by

t=augknt(breaks,k);

Initial Guess
As our initial guess for the , we use the knot averages

recommended as good interpolation site choices. These are supplied by

tau=aveknt(t,k);

We plot the resulting first approximation to , i.e., the spline that satisfies

, all :

b = cumprod(repmat(-1,1,n)); b = b*b(end);
c = spapi(t,tau,b);
fnplt(c,'-.')
grid

Here is the resulting picture.
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First Approximation to a Chebyshev Spline

Remez Iteration
Starting from this approximation, we use the Remez algorithm to produce a
sequence of splines converging to . This means that we construct new as
the extrema of our current approximation to and try again. Here is the
entire loop.

We find the new interior as the zeros of , i.e., the first derivative of , in
several steps. First, we differentiate:

Dc = fnder(c);

Next, we take the zeros of the control polygon of as our first guess for the
zeros of . For this, we must take apart the spline Dc.

[knots,coefs,np,kp] = fnbrk(Dc,'knots','coefs','n','order');
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The control polygon has the vertices (tstar(i),coefs(i)), with tstar the
knot averages for the spline, provided by aveknt:

tstar = aveknt(knots,kp);

Here are the zeros of the resulting control polygon of Dc:

npp = (1:np-1);
guess = tstar(npp) -coefs(npp).*(diff(tstar)./diff(coefs));

This provides already a very good first guess for the actual zeros.

We refine this estimate for the zeros of by two steps of the secant method,
taking tau and the resulting guess as our first approximations. First, we
evaluate at both sets:

sites = tau(ones(4,1),2:n-1);
sites(1,:) = guess;
values = zeros(4,n-2);
values(1:2,:) = reshape(fnval(Dc,sites(1:2,:)),2,n-2);

Now come two steps of the secant method. We guard against division by zero
by setting the function value difference to 1 in case it is zero. Since is
strictly monotone near the sites sought, this is harmless:

for j=2:3
rows = [j,j-1];Dcd=diff(values(rows,:));
Dcd(find(Dcd==0)) = 1;
sites(j+1,:) = sites(j,:) ...

-values(j,:).*(diff(sites(rows,:))./Dcd);
values(j+1,:) = fnval(Dc,sites(j+1,:));

end

The check

max(abs(values.'))
ans = 4.1176 5.7789 0.4644 0.1178

shows the improvement.

Now we take these sites as our new tau,
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tau = [tau(1) sites(4,:) tau(n)];

and check the extrema values of our current approximation there:

extremes = abs(fnval(c, tau));

The difference

max(extremes)-min(extremes)
ans = 0.6905

is an estimate of how far we are from total leveling.

We construct a new spline corresponding to our new choice of tau and plot it
on top of the old:

c = spapi(t,tau,b);
sites = sort([tau (0:100)*(t(n+1)-t(k))/100]);
values = fnval(c,sites);
hold on, plot(sites,values)

Here is the resulting picture.
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A More Nearly Level Spline
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If this is not close enough, one simply reiterates the loop. For this example,
the next iteration already produces to graphic accuracy.
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Approximation by Tensor Product Splines
Since the toolbox can handle splines with vector coefficients, it is easy to
implement interpolation or approximation to gridded data by tensor product
splines, as the following illustration is meant to show. This example can also
be run via the demo “Bivariate Tensor Product Splines”.

To be sure, most tensor product spline approximation to gridded data can be
obtained directly with one of the spline construction commands, like spapi
or csape, in this toolbox, without concern for the details discussed in this
example. Rather, this example is meant to illustrate the theory behind the
tensor product construction, and this will be of help in situations not covered
by the construction commands in this toolbox.

This section discusses these aspects of the tensor product spline problem:

• “Choice of Sites and Knots” on page 9-20

• “Least Squares Approximation as Function of y” on page 9-21

• “Approximation to Coefficients as Functions of x” on page 9-22

• “The Bivariate Approximation” on page 9-27

• “Switch in Order” on page 9-25

• “Approximation to Coefficients as Functions of y” on page 9-26

• “The Bivariate Approximation” on page 9-27

• “Comparison and Extension” on page 9-28

Choice of Sites and Knots
Consider, for example, least squares approximation to given data

. We take the data from a function used
extensively by Franke for the testing of schemes for surface fitting (see R.
Franke, “A critical comparison of some methods for interpolation of scattered
data,” Naval Postgraduate School Techn. Rep. NPS-53-79-003, March
1979). Its domain is the unit square. We choose a few more data sites in the
-direction than the -direction; also, for a better definition, we use higher
data density near the boundary.

x = sort([(0:10)/10,.03 .07, .93 .97]);
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y = sort([(0:6)/6,.03 .07, .93 .97]);
[xx,yy] = ndgrid(x,y); z = franke(xx,yy);

Least Squares Approximation as Function of y
We treat these data as coming from a vector-valued function, namely, the
function of whose value at is the vector , all . For no particular
reason, we choose to approximate this function by a vector-valued parabolic
spline, with three uniformly spaced interior knots. This means that we choose
the spline order and the knot sequence for this vector-valued spline as

ky = 3; knotsy = augknt([0,.25,.5,.75,1],ky);

and then use spap2 to provide us with the least squares approximant to the
data:

sp = spap2(knotsy,ky,y,z);

In effect, we are finding simultaneously the discrete least squares
approximation from Sky,knotsy to each of the Nx data sets

In particular, the statements

yy = -.1:.05:1.1; vals = fnval(sp,yy);

provide the array vals, whose entry can be taken as an approximation
to the value of the underlying function at the mesh-point

since is the value at of the approximating spline
curve in sp.

This is evident in the following figure, obtained by the command:

mesh(x,yy,vals.'), view(150,50)

Note the use of vals.', in the mesh command, needed because of the MATLAB
matrix-oriented view when plotting an array. This can be a serious problem
in bivariate approximation since there it is customary to think of as the
function value at the point , while MATLAB thinks of as the
function value at the point .
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A Family of Smooth Curves Pretending to Be a Surface

Note that both the first two and the last two values on each smooth curve are
actually zero since both the first two and the last two sites in yy are outside
the basic interval for the spline in sp.

Note also the ridges. They confirm that we are plotting smooth curves in
one direction only.

Approximation to Coefficients as Functions of x
To get an actual surface, we now have to go a step further. Look at the
coefficients coefsy of the spline in sp:

coefsy = fnbrk(sp,'c');

Abstractly, you can think of the spline in sp as the function
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with the th entry of the vector coefficient corresponding
to , all . This suggests approximating each coefficient vector by
a spline of the same order kx and with the same appropriate knot sequence
knotsx. Again for no particular reason, we choose this time to use cubic
splines with four uniformly spaced interior knots:

kx = 4; knotsx = augknt([0:.2:1],kx);
sp2 = spap2(knotsx,kx,x,coefsy.');

Note that spap2(knots,k,x,fx) expects fx(:,j) to be the datum at x(j), i.e.,
expects each column of fx to be a function value. Since we wanted to fit the
datum at , all , we had to present spap2 with the transpose of
coefsy.

The Bivariate Approximation
Now consider the transpose of the coefficients cxy of the resulting spline curve:

coefs = fnbrk(sp2,'c').';

It provides the bivariate spline approximation

to the original data

To plot this spline surface over a grid, e.g., the grid

xv = 0:.025:1; yv = 0:.025:1;

you can do the following:

values = spcol(knotsx,kx,xv)*coefs*spcol(knotsy,ky,yv).';
mesh(xv,yv,values.'), view(150,50);
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This results in the following figure.
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Spline Approximation to Franke’s Function

This makes good sense since spcol(knotsx,kx,xv) is the matrix whose
th entry equals the value at of the th B-spline of order

kx for the knot sequence knotsx.

Since the matrices spcol(knotsx,kx,xv) and spcol(knotsy,ky,yv) are
banded, it may be more efficient, though perhaps more memory-consuming,
for large xv and yv to make use of fnval, as follows:

value2 = ...
fnval(spmak(knotsx,fnval(spmak(knotsy,coefs),yv).'),xv).';

This is, in fact, what happens internally when fnval is called directly with a
tensor product spline, as in

value2 = fnval(spmak({knotsx,knotsy},coefs),{xv,yv});

Here is the calculation of the relative error, i.e., the difference between the
given data and the value of the approximation at those data sites as compared
with the magnitude of the given data:

errors = z - spcol(knotsx,kx,x)*coefs*spcol(knotsy,ky,y).';
disp( max(max(abs(errors)))/max(max(abs(z))) )
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0.0539

This is perhaps not too impressive. On the other hand, we used only a
coefficient array of size

disp(size(coefs))
8 6

to fit a data array of size

disp(size(z))
15 11

Switch in Order
The approach followed here seems biased, in the following way. We first think
of the given data z as describing a vector-valued function of , and then we
treat the matrix formed by the vector coefficients of the approximating curve
as describing a vector-valued function of .

What happens when we take things in the opposite order, i.e., think of z as
describing a vector-valued function of , and then treat the matrix made
up from the vector coefficients of the approximating curve as describing a
vector-valued function of ?

Perhaps surprisingly, the final approximation is the same, up to roundoff.
Here is the numerical experiment.

Least Squares Approximation as Function of x
First, we fit a spline curve to the data, but this time with as the independent
variable, hence it is the rows of z that now become the data values.
Correspondingly, we must supply z.', rather than z, to spap2,

spb = spap2(knotsx,kx,x,z.');

thus obtaining a spline approximation to all the curves . In
particular, the statement

valsb = fnval(spb,xv).';
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provides the matrix valsb, whose entry can be taken as an
approximation to the value of the underlying function at the
mesh-point . This is evident when we plot valsb using mesh:

mesh(xv,y,valsb.'), view(150,50)
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Another Family of Smooth Curves Pretending to Be a Surface

Note the ridges. They confirm that we are, once again, plotting smooth curves
in one direction only. But this time the curves run in the other direction.

Approximation to Coefficients as Functions of y
Now comes the second step, to get the actual surface. First, extract the
coefficients:

coefsx = fnbrk(spb,'c');

Then fit each coefficient vector coefsx(r,:) by a spline of the same order ky
and with the same appropriate knot sequence knotsy:

spb2 = spap2(knotsy,ky,y,coefsx.');

Note that, once again, we need to transpose the coefficient array from spb,
since spap2 takes the columns of its last input argument as the data values.
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Correspondingly, there is now no need to transpose the coefficient array
coefsb of the resulting curve:

coefsb = fnbrk(spb2,'c');

The Bivariate Approximation
The claim is that coefsb equals the earlier coefficient array coefs, up to
round-off, and here is the test:

disp( max(max(abs(coefs - coefsb))) )
1.4433e-15

The explanation is simple enough: The coefficients c of the spline contained
in sp = spap2(knots,k,x,y) depend linearly on the input values . This
implies, given that both c and y are 1-row matrices, that there is some matrix

so that

for any data y. This statement even holds when y is a matrix, of size -by- ,
say, in which case each datum is taken to be a point in , and the
resulting spline is correspondingly -vector-valued, hence its coefficient array
c is of size -by-n, with n = length(knots)-k.

In particular, the statements

sp = spap2(knotsy,ky,y,z);
coefsy =fnpbrk(sp,'c');

provide us with the matrix coefsy that satisfies

The subsequent computations

sp2 = spap2(knotsx,kx,xx,coefsy.');
coefs = fnbrk(sp2,'c').';

generate the coefficient array coefs, which, taking into account the two
transpositions, satisfies
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In the second, alternative, calculation, we first computed

spb = spap2(knotsx,kx,x,z.');
coefsx = fnbrk(spb,'c');

hence . The subsequent calculation

spb2 = spap2(knotsy,ky,y,coefsx.');
coefsb = fnbrk(spb,'c');

then provided

Consequently, coefsb = coefs.

Comparison and Extension
The second approach is more symmetric than the first in that transposition
takes place in each call to spap2 and nowhere else. This approach can be used
for approximation to gridded data in any number of variables.

If, for example, the given data over a three-dimensional grid are contained in
some three-dimensional array v of size [Nx,Ny,Nz], with v(i,j,k) containing
the value , then we would start off with

coefs = reshape(v,Nx,Ny*Nz);

Assuming that nj = knotsj - kj, for j = x,y,z, we would then proceed as
follows:

sp = spap2(knotsx,kx,x,coefs.');
coefs = reshape(fnbrk(sp,'c'),Ny,Nz*nx);
sp = spap2(knotsy,ky,y,coefs.');
coefs = reshape(fnbrk(sp,'c'),Nz,nx*ny);
sp = spap2(knotsz,kz,z,coefs.');
coefs = reshape(fnbrk(sp,'c'),nx,ny*nz);
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See Chapter 17 of PGS or [C. de Boor, “Efficient computer manipulation
of tensor products,” ACM Trans. Math. Software 5 (1979), 173–182;
Corrigenda, 525] for more details. The same references also make clear
that there is nothing special here about using least squares approximation.
Any approximation process, including spline interpolation, whose resulting
approximation has coefficients that depend linearly on the given data, can
be extended in the same way to a multivariate approximation process to
gridded data.

This is exactly what is used in the spline construction commands csapi,
csape, spapi, spaps, and spap2, when gridded data are to be fitted. It is also
used in fnval, when a tensor product spline is to be evaluated on a grid.
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10 Function Reference

GUIs
bspligui Experiment with B-spline as

function of its knots

splinetool Experiment with some spline
approximation methods
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Construction of Splines

Construction of Splines
csape Cubic spline interpolation with end

conditions

csapi Cubic spline interpolation

csaps Cubic smoothing spline

cscvn "Natural" or periodic interpolating
cubic spline curve

getcurve Interactive creation of cubic spline
curve

ppmak Put together spline in ppform

rpmak, rsmak Put together rational spline

rscvn Piecewise biarc Hermite
interpolation

spap2 Least-squares spline approximation

spapi Spline interpolation

spaps Smoothing spline

spcrv Spline curve by uniform subdivision

spmak Put together spline in B-form

stmak Put together function in stform

tpaps Thin-plate smoothing spline
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Operators
fn2fm Convert to specified form

fnbrk Name and part(s) of form

fnchg Change part(s) of form

fncmb Arithmetic with function(s)

fnder Differentiate function

fndir Directional derivative of function

fnint Integrate function

fnjmp Jumps, i.e., f(x+)-f(x-)

fnmin Minimum of function in given
interval

fnplt Plot function

fnrfn Refine partition of form

fntlr Taylor coefficients or polynomial

fnval Evaluate function

fnxtr Extrapolate function

fnzeros Find zeros of function in given
interval
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Work with Breaks, Knots, and Sites
aptknt Acceptable knot sequence

augknt Augment knot sequence

aveknt Provide knot averages

brk2knt Convert breaks with multiplicities
into knots

chbpnt Good data sites, Chebyshev-Demko
points

knt2brk, knt2mlt Convert knots to breaks and their
multiplicities

newknt New break distribution

optknt Knot distribution “optimal” for
interpolation

sorted Locate sites with respect to mesh
sites
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Customized Linear Equation Solver
bkbrk Part(s) of almost block-diagonal

matrix

slvblk Solve almost block-diagonal linear
system
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Information About Splines and the Toolbox

Information About Splines and the Toolbox
bspline B-spline and its polynomial pieces

spterms Explanation of Spline Toolbox terms
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Utilities
franke Franke’s bivariate test function

spcol B-spline collocation matrix

splpp, sprpp Taylor coefficients from local
B-coefficients

stcol Scattered translates collocation
matrix

subplus Positive part

titanium Titanium test data
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Functions – Alphabetical
List

This section contains Spline Toolbox reference pages, listed alphabetically.
For ease of use, most toolbox functions have default arguments. In the
reference entry under Syntax, we usually first list the function with all
necessary input arguments and then with all possible input arguments. When
there is more than one optional argument, then, sometimes, but not always,
their exact order is immaterial. When their order does matter, you have to
specify every optional argument preceding the one(s) you are interested in.
In this situation, you can specify the default value for an optional argument
by using [] (the empty matrix) as the input for it. The description in the
reference page tells you the default value for each optional input argument.

As in MATLAB, only the output arguments explicitly specified are returned
to the user.



aptknt

Purpose Acceptable knot sequence

Syntax knots = aptknt(tau,k)
[knots,k] = aptknt(tau,k)

Description knots = aptknt(tau,k) returns a knot sequence suitable for
interpolation at the data sites tau by splines of order k with that knot
sequence, provided tau has at least k entries, is nondecreasing, and
satisfies tau(i)<tau(i+k-1) for all i. In that case, there is exactly one
spline of order k with knot sequence knots that matches given values at
those sites. This is so because the sequence knots returned satisfies the
Schoenberg-Whitney conditions

knots(i) < tau(i) < knots(i+k), i=1:length(tau)

with equality only at the extreme knots, each of which occurs with exact
multiplicity k.

If tau has fewer than k entries, then k is reduced to the value
length(tau). An error results if tau fails to be nondecreasing and/or
tau(i) equals tau(i+k-1) for some i.

[knots,k] = aptknt(tau,k) also returns the actual k used (which
equals the smaller of the input k and length(tau)).

Examples If tau is equally spaced, e.g., equal to linspace(a,b,n) for some
n>=4, and y is a sequence of the same size as tau, then sp =
spapi(aptknt(tau,4),tau,y) gives the cubic spline interpolant with
the not-a-knot end condition. This is the same cubic spline as produced
by the command spline(tau,y), but in B-form rather than ppform.

Algorithm The (k-1)-point averages sum(tau(i+1:i+k-1))/(k-1) of the sequence
tau, as supplied by aveknt(tau,k), are augmented by a k-fold tau(1)
and a k-fold tau(end). In other words, the command gives the same
result as augknt([tau(1),aveknt(tau,k),tau(end)],k), provided
tau has at least k entries and k is greater than 1.
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See Also augknt, aveknt, newknt, optknt

Cautionary
Note

If tau is very nonuniform, then use of the resulting knot sequence for
interpolation to data at the sites tau may lead to unsatisfactory results.
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Purpose Augment knot sequence

Syntax augknt(knots,k)
augknt(knots,k,mults)
[augknot,addl] = augknt(...)

Description augknt(knots,k) returns a nondecreasing and augmented knot
sequence that has the first and last knot with exact multiplicity k. (This
may actually shorten the knot sequence.) )

augknt(knots,k,mults) makes sure that the augmented knot
sequence returned will, in addition, contain each interior knot mults
times. If mults has exactly as many entries as there are interior
knots, then the th one will appear times. Otherwise, the
uniform multiplicity mults(1) is used. If knots is strictly increasing,
this ensures that the splines of order k with knot sequence augknot
satisfy k-mults(j) smoothness conditions across knots(j+1),
j=1:length(knots)-2.

[augknot,addl] = augknt(...) also returns the number addl of knots
added on the left. (This number may be negative.)

Examples If you want to construct a cubic spline on the interval [a..b], with two
continuous derivatives, and with the interior break sequence xi, then
augknt([a,b,xi],4) is the knot sequence you should use.

If you want to use Hermite cubics instead, i.e., a cubic spline with
only one continuous derivative, then the appropriate knot sequence is
augknt([a,xi,b],4,2).

augknt([1 2 3 3 3],2) returns the vector [1 1 2 3 3], as does
augknt([3 2 3 1 3],2). In either case, addl would be 1.
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Purpose Provide knot averages

Syntax tstar = aveknt(t,k)

Description tstar = aveknt(t,k) returns the averages of successive k-1 knots,
i.e., the sites

which are recommended as good interpolation site choices when

interpolating from splines of order k with knot sequence .

Examples aveknt([1 2 3 3 3],3) returns the vector [2.5000 3.0000], while
aveknt([1 2 3],3) returns the empty vector.

With k and the strictly increasing sequence breaks given, the
statements

t = augknt(breaks,k); x = aveknt(t);
sp = spapi(t,x,sin(x));

provide a spline interpolant to the sine function on the interval
[breaks(1)..breaks(end)].

For sp the B-form of a scalar-valued univariate spline function, and
with tstar and a computed as

tstar = aveknt(fnbrk(sp,'knots'),fnbrk(sp,'order'));
a = fnbrk(sp,'coefs');

the points constitute the control points of the spline, i.e., the
vertices of the spline’s control polygon.

See Also aptknt, chbpnt, optknt
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bkbrk

Purpose Part(s) of almost block-diagonal matrix

Syntax [nb,rows,ncols,last,blocks] = bkbrk(blokmat)
bkbrk(blokmat)

Description [nb,rows,ncols,last,blocks] = bkbrk(blokmat) returns the
details of the almost block-diagonal matrix contained in blokmat,
with rows and last nb-vectors, and blocks a matrix of size
[sum(rows),ncols].

This utility program is not likely to be of interest to the casual user. It
is used in slvblk to decode the information, provided by spcol, about
a spline collocation matrix in an almost block diagonal form especially
suited for splines. But bkbrk can also decode the almost block-diagonal
form used in [1].

bkbrk(blokmat) returns nothing, but the details are printed out. This
is of use when trying to understand what went wrong with such a
matrix.

See Also slvblk, spcol

References [1] C. de Boor and R. Weiss. “SOLVEBLOK: A package for solving
almost block diagonal linear systems.” ACM Trans. Mathem. Software
6 (1980), 80–87.
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brk2knt

Purpose Convert breaks with multiplicities into knots

Syntax [knots,index] = brk2knt(breaks,mults)

Description [knots,index] = brk2knt(breaks,mults) returns the sequence
knots that is the sequence breaks but with breaks(i) occurring
mults(i) times, all i. In particular, breaks(i) will not appear unless
mults(i)>0. If, as one would expect, breaks is a strictly increasing
sequence, then knots contains each breaks(i) exactly mults(i) times.

If mults does not have exactly as many entries as does breaks, then all
mults(i) are set equal to mults(1).

If, as one would expect, breaks is strictly increasing and all
multiplicities are positive, then, for each i, index(i) is the first place
in knots at which breaks(i) appears.

Examples The statements

t = [1 1 2 2 2 3 4 5 5];
[xi,m] = knt2brk(t);
tt = brk2knt(xi,m)

give [1 2 3 4 5] for xi, [2 3 1 1 2] for m, and, finally, t for tt.

See Also augknt, knt2brk, knt2mlt
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bspligui

Purpose Experiment with B-spline as function of its knots

Syntax bspligui

Description bspligui starts a graphical user interface (GUI) for exploring how a
B-spline depends on its knots. As you add, move, or delete knots, you
see the B-spline and its first three derivatives change accordingly.

You observe the following basic facts about the B-spline with knot
sequence :

• The B-spline is positive on the open interval . It is zero at the
end knots, and , unless they are knots of multiplicity k. The
B-spline is also zero outside the closed interval , but that part
of the B-spline is not shown in the GUI.

• Even at its maximum, the B-spline is never bigger than 1. It reaches
the value 1 inside the interval only at a knot of multiplicity at
least . On the other hand, that maximum cannot be arbitrarily
small; it seems smallest when there are no interior knots.

• The B-spline is piecewise polynomial of order , i.e., its polynomial
pieces all are of degree . For , you can even observe that
all its nonzero polynomial pieces are of exact degree k-1, by looking at
the first three derivatives of the B-spline. This means that the degree
goes up/down by 1 every time you add/delete a knot.

• Each knot is a break for the B-spline, but it is permissible for
several knots to coincide. Therefore, the number of nontrivial
polynomial pieces is maximally (when all the knots are different)
and minimally 1 (when there are no "interior" knots), and any
number between 1 and is possible.

• The smoothness of the B-spline across a break depends on the
multiplicity of the corresponding knot. If the break occurs in the
knot sequence times, then the th derivative of the B-spline
has a jump across that break, while all derivatives of order lower
than are continuous across that break. Thus, by varying the
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multiplicity of a knot, you can control the smoothness of the B-spline
across that knot.

• As one knot approaches another, the highest derivative that is
continuous across both develops a jump and the higher derivatives
become unbounded. But nothing dramatic happens in any of the
lower-order derivatives.

• The B-spline is bell-shaped in the following sense: if the first
derivative is not identically zero, then it has exactly one sign change
in the interval , hence the B-spline itself is unimodal, meaning
that it has exactly one maximum. Further, if the second derivative
is not identically zero, then it has exactly two sign changes in that
interval. Finally, if the third derivative is not identically zero, then it
has exactly three sign changes in that interval. This illustrates the
fact that, for , if the th derivative is not identically zero,
then it has exactly sign changes in the interval ; it is this
property that is meant by the term "bell-shaped". For this claim to be
strictly true, one has to be careful with the meaning of "sign change"
in case there are knots with multiplicities. For example, the st
derivative is piecewise constant, hence it cannot have sign
changes in the straightforward sense unless there are polynomial
pieces, i.e., unless all the knots are simple.

See Also bspline, chbpnt, spcol
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bspline

Purpose B-spline and its polynomial pieces

Syntax bspline(t)
bspline(t,window)
pp = bspline(t)

Description bspline(t) plots , i.e., the B-spline with knot sequence t, as well
as the polynomial pieces of which it is composed.

bspline(t,window) does the plotting in the subplot window specified
by window; see the MATLAB command subplot for details.

pp = bspline(t) plots nothing but returns the ppform of the B-spline.

Examples The statement pp=fn2fm(spmak(t,1),'pp') has the same effect as the
statement pp=bspline(t).

See Also bspligui
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chbpnt

Purpose Good data sites, Chebyshev-Demko points

Syntax tau = chbpnt(t,k)
chbpnt(t,k,tol)
[tau,sp] = chbpnt(...)

Description tau = chbpnt(t,k) are the extreme sites of the Chebyshev spline of
order k with knot sequence t. These are particularly good sites at
which to interpolate data by splines of order k with knot sequence t
because the resulting interpolant is often quite close to the best uniform
approximation from that spline space to the function whose values at
tau are being interpolated.

chbpnt(t,k,tol) also specifies the tolerance tol to be used in the
iterative process that constructs the Chebyshev spline. This process is
terminated when the relative difference between the absolutely largest
and the absolutely smallest local extremum of the spline is smaller than
tol. The default value for tol is .001.

[tau,sp] = chbpnt(...) also returns, in sp, the Chebyshev spline.

Examples chbpnt([-ones(1,k),ones(1,k)],k) provides (approximately) the
extreme sites on the interval [-1 .. 1] of the Chebyshev polynomial of
degree k-1.

If you have decided to approximate the square-root function on the
interval [0 .. 1] by cubic splines, with knot sequence t as given by

k = 4; n = 10; t = augknt(((0:n)/n).^8,k);

then a good approximation to the square-root function from that specific
spline space is given by

x = chbpnt(t,k); sp = spapi(t,x,sqrt(x));

as is evidenced by the near equi-oscillation of the error.
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Algorithm The Chebyshev spline for the given knot sequence and order is
constructed iteratively, using the Remez algorithm, using as initial
guess the spline that takes alternately the values 1 and −1 at the
sequence aveknt(t,k). The demo “Constructing the Chebyshev Spline”
gives a detailed discussion of one version of the process as applied to a
particular example.

See Also aveknt
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Purpose Cubic spline interpolation with end conditions

Syntax pp = csape(x,y)
pp = csape(x,y,conds)

Description pp = csape(x,y) is the ppform of a cubic spline s with knot sequence
x that satisfies s(x(j)) = y(:,j) for all j, as well as an additional
end condition at the ends (meaning the leftmost and at the rightmost
data site), namely the default condition listed below. The data values
y(:,j) may be scalars, vectors, matrices, even ND-arrays. Data values
at the same data site are averaged.

pp = csape(x,y,conds) lets you choose the end conditions to be used,
from a rather large and varied catalog, by proper choice of conds. If
needed, you supply the corresponding end condition values as additional
data values, with the first (last) data value taken as the end condition
value at the left (right) end. In other words, in that case, s(x(j))
matches y(:,j+1) for all j, and the variable endcondvals used in the
detailed description below is set to y(:,[1 end]). For some choices
of conds, these end condition values need not be present and/or are
ignored when present.

conds may be a string whose first character matches one of the
following: 'complete' or 'clamped', 'not-a-knot', 'periodic',
'second', 'variational', with the following meanings.

'complete' or
'clamped'

Match endslopes (as given, with default as under
“default”).

’not-a-knot' Make second and second-last sites inactive knots
(ignoring end condition values if given).

'periodic' Match first and second derivatives at left end with
those at right end.

'second' Match end second derivatives (as given, with
default [0 0], i.e., as in 'variational').
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'variational' Set end second derivatives equal to zero (ignoring
end condition values if given).

default Match endslopes to the slope of the cubic that
matches the first four data at the respective end
(i.e., Lagrange).

By giving conds as a 1-by-2 matrix instead, it is possible to specify
different conditions at the two ends. Explicitly, the th derivative, ,
is given the value endcondvals(:, ) at the left ( is 1) respectively right (
is 2) end in case is . There are default values for conds
and/or endcondvals.

Available conditions are:

clamped = endcondvals(:,j) if conds(j) == 1

curved
=

endcondvals(:,j)

if conds(j) == 2

Lagrange default

periodic if conds == [0 0]

variational if conds(j) == 2 &
endcondvals(:,j) == 0

Here, is ( is ), i.e., the left (right) end, in case j is 1 (j is 2), and (in
the Lagrange condition) is the cubic polynomial that interpolates to
the given data at and the three sites nearest .

If conds(j) is not specified or is different from 0, 1, or 2, then it is
taken to be 1 and the corresponding endcondvals(:,j) is taken to be
the corresponding default value.

The default value for endcondvals(:,j) is the derivative of the cubic
interpolant at the nearest four sites in case conds(j) is 1, and is 0
otherwise.
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It is also possible to handle gridded data, by having x be a cell array
containing univariate meshes and, correspondingly, having y be an
-dimensional array (or an -dimensional array if the function is

to be -valued). Correspondingly, conds is a cell array with entries,
and end condition values may be correspondingly supplied in each of
the m variables. This, as the last example below, of bicubic spline
interpolation, makes clear, may require you to supply end conditions
for end conditions.

This command calls on a much expanded version of the Fortran routine
CUBSPL in PGS.

Examples csape(x,y) provides the cubic spline interpolant with the Lagrange
end conditions, while csape(x,y,[2 2]) provides the variational,
or natural cubic spline interpolant, as does csape(x,y,'v').
csape([-1 1],[3 -1 1 6],[1 2]) provides the cubic polynomial for

which , , , , i.e., .
Finally, csape([-1 1],[-1 1]) provides the straight line p for which
p(±1) = ±1, i.e., .

End conditions other than the ones listed earlier can be handled along
the following lines. Suppose that we want to enforce the condition

for given scalars , , and , and with equal to x(1). Then one could
compute the cubic spline interpolant to the given data using the
default end condition as well as the cubic spline interpolant to zero
data and some (nontrivial) end condition at , and then obtain the
desired interpolant in the form

Here are the (not inconsiderable) details (in which the first polynomial
piece of and is pulled out to avoid differentiating all of and ):

pp1 = csape(x,y);
dp1 = fnder(fnbrk(pp1,1));
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pp0 = csape(x,[1,zeros(1,length(y)),0],[1,0]);
dp0 = fnder(fnbrk(pp0,1));
e = x(1);
lam1 = a*fnval(dp1,e) + b*fnval(fnder(dp1),e);
lam0 = a*fnval(dp0,e) + b*fnval(fnder(dp0),e);
pp = fncmb(pp0,(c-lam1)/lam0,pp1);

As a multivariate vector-valued example, here is a sphere, done as a
parametric bicubic spline, 3D-valued, using prescribed slopes in one
direction and periodic end conditions in the other:

x = 0:4; y=-2:2; s2 = 1/sqrt(2);
clear v
v(3,:,:) = [0 1 s2 0 -s2 -1 0].'*[1 1 1 1 1];
v(2,:,:) = [1 0 s2 1 s2 0 -1].'*[0 1 0 -1 0];
v(1,:,:) = [1 0 s2 1 s2 0 -1].'*[1 0 -1 0 1];
sph = csape({x,y},v,{'clamped','periodic'});
values = fnval(sph,{0:.1:4,-2:.1:2});
surf(squeeze(values(1,:,:)),squeeze(values(2,:,:)),...
squeeze(values(3,:,:))); axis equal, axis off

The lines involving fnval and surf could have been replaced by
the simple command: fnplt(sph). Note that v is a 3-dimensional
array, with v(:,i+1,j) the 3-vector to be matched at (x(i),y(j)),
i=1:5, j=1:5. Note further that, in accordance with conds{1} being
'clamped', size(v,2) is 7 (and not 5), with the first and last entry of
v(r,:,j) specifying the end slopes to be matched.

Here is a bivariate example that shows the need for supplying end
conditions of end conditions when supplying end conditions in both
variables. We reproduce the bicubic polynomial g(x,y) = x^3y^3 by
complete bicubic interpolation. We derive the needed data, including
end condition values, directly from g in order to make it easier for you
to see just how the end condition values must be placed. We also check
the result.

sites = {[0 1],[0 2]}; coefs = zeros(4,4); coefs(1,1) = 1;
g = ppmak({bx,by},coefs);
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Dxg = fnval(fnder(g,[1 0]),sites);
Dyg = fnval(fnder(g,[0 1]),sites);
Dxyg = fnval(fnder(g,[1 1]),sites);
f = csape(sites,[Dxyg(1,1), Dxg(1,:), Dxyg(1,2); ...

Dyg(:,1), fnval(g,sites), Dyg(:,2) ; ...
Dxyg(2,1), Dxg(2,:), Dxyg(2,2)], ...

{'complete','complete'});
if any(squeeze(fnbrk(f,'c'))-coefs), 'this is wrong', end

Algorithm The relevant tridiagonal linear system is constructed and solved using
the sparse matrix capabilities of MATLAB.

See Also csapi, spapi, spline

Cautionary
Note

csape recognizes that you supplied explicit end condition values by the
fact that you supplied exactly two more data values than data sites. In
particular, even when using different end conditions at the two ends,
if you wish to supply an end condition value at one end, you must also
supply one for the other end.
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Purpose Cubic spline interpolation

Syntax pp=csapi(x,y)
values = csapi(x,y,xx)

Description pp=csapi(x,y) returns the ppform of a cubic spline s with knot
sequence x that takes the value y(:,j) at x(j) for j=1:length(x). The
values y(:,j) can be scalars, vectors, matrices, even ND-arrays. Data
points with the same data site are averaged and then sorted by their
sites. With x the resulting sorted data sites, the spline s satisfies the

not-a-knot end conditions, namely
(with the third derivative of ).

If x is a cell array, containing sequences x1, ..., xm, of lengths n1, ..., nm
respectively, then y is expected to be an array, of size [n1,...,nm]
(or of size [d,n1,...,nm] if the interpolant is to be d-valued). In
that case, pp is the ppform of an m-cubic spline interpolant s to such
data. In particular, now equals for

.

You can use the structure pp, in fnval, fnder, fnplt, etc, to evaluate,
differentiate, plot, etc, this interpolating cubic spline.

values = csapi(x,y,xx) is the same as fnval(csapi(x,y),xx), i.e.,
the values of the interpolating cubic spline at the sites specified by
xx are returned.

This command is essentially the MATLAB function spline, which, in
turn, is a stripped-down version of the Fortran routine CUBSPL in PGS,
except that csapi (and now also spline) accepts vector-valued data and
can handle gridded data.

Examples See the demo “Spline Interpolation” for various examples.

Up to rounding errors, and assuming that x is a vector with at least four
entries, the statement pp = csapi(x,y) should put the same spline
into pp as does the statement
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pp = fn2fm(spapi(augknt(x([1 3:(end-2) end]),4),x,y),'pp');

except that the description of the spline obtained this second way will
use no break at x(2) and x(n-1).

Here is a simple bivariate example, a bicubic spline interpolant to the
Mexican Hat function being plotted:

x =.0001+[-4:.2:4]; y = -3:.2:3;
[yy,xx] = meshgrid(y,x); r = pi*sqrt(xx.^2+yy.^2); z = sin(r)./r;
bcs = csapi( {x,y}, z ); fnplt( bcs ), axis([-5 5 -5 5 -.5 1])

Note the reversal of x and y in the call to meshgrid, needed since
MATLAB likes to think of the entry z(i,j) as the value at (x(j),y(i))
while this toolbox follows the Approximation Theory standard of
thinking of z(i,j) as the value at (x(i),y(j)). Similar caution has to
be exerted when values of such a bivariate spline are to be plotted with
the aid of the MATLAB mesh function, as is shown here (note the use of
the transpose of the matrix of values obtained from fnval).

xf = linspace(x(1),x(end),41); yf = linspace(y(1),y(end),41);
mesh(xf, yf, fnval( bcs, {xf, yf}).')

Algorithm The relevant tridiagonal linear system is constructed and solved, using
the MATLAB sparse matrix capability.

The not-a-knot end condition is used, thus forcing the first and
second polynomial piece of the interpolant to coincide, as well as the
second-to-last and the last polynomial piece.

See Also csape, spapi, spline
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Purpose Cubic smoothing spline

Syntax pp = csaps(x,y)
csaps(x,y,p)
[...,p] = csaps(...)
csaps(x,y,p,[],w)
values = csaps(x,y,p,xx)
csaps(x,y,p,xx,w)
[...] = csaps({x1,...,xm},y,...)

Description pp = csaps(x,y) returns the ppform of a cubic smoothing spline
to the given data x,y, with the value of at the data site x(j)

approximating the data value y(:,j), for j=1:length(x). The values
may be scalars, vectors, matrices, even ND-arrays. Data points with the
same site are replaced by their (weighted) average, with its weight the
sum of the corresponding weights.

This smoothing spline minimizes

Here, stands for the sum of the squares of all the entries of , is
the number of entries of x, and the integral is over the smallest interval
containing all the entries of x. The default value for the weight vector
w in the error measure is ones(size(x)). The default value for the
piecewise constant weight function in the roughness measure is the

constant function 1. Further, denotes the second derivative of the
function . The default value for the smoothing parameter, p, is chosen
in dependence on the given data sites x.

If the smoothing spline is to be evaluated outside its basic interval, it
must first be properly extrapolated, by the command pp = fnxtr(pp),
to ensure that its second derivative is zero outside the interval spanned
by the data sites.

csaps(x,y,p) lets you supply the smoothing parameter. The
smoothing parameter determines the relative weight you would like to
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place on the contradictory demands of having be smooth vs having
be close to the data. For p = 0, is the least-squares straight line

fit to the data, while, at the other extreme, i.e., for p = 1, is the
variational, or ‘natural’ cubic spline interpolant. As p moves from 0 to
1, the smoothing spline changes from one extreme to the other. The

interesting range for p is often near , with the average
spacing of the data sites, and it is in this range that the default value
for p is chosen. For uniformly spaced data, one would expect a close

following of the data for and some satisfactory

smoothing for . You can input a p > 1, but this
leads to a smoothing spline even rougher than the variational cubic
spline interpolant.

If the input p is negative or empty, then the default value for p is used.

[...,p] = csaps(...) also returns the value of p actually used
whether or not you specified p. This is important for experimentation
which you might start with [pp,p]=csaps(x,y) in order to obtain a
‘reasonable’ first guess for p.

If you have difficulty choosing p but have some feeling for the size of
the noise in y, consider using instead spaps(x,y,tol) which, in effect,
chooses p in such a way that the roughness measure

is as small as possible subject to the condition that the error measure

does not exceed the specified tol . This usually means that the error
measure equals the specified tol .

The weight function in the roughness measure can, optionally, be
specified as a (nonnegative) piecewise constant function, with breaks at
the data sites x , by inputing for p a vector whose ith entry provides the
value of on the interval (x(i-1) .. x(i)) for i=2:length(x). The first
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entry of the input vector p continues to be used as the desired value of
the smoothness parameter p. In this way, it is possible to insist that the
resulting smoothing spline be smoother (by making the weight function
larger) or closer to the data (by making the weight functions smaller)
in some parts of the interval than in others.

csaps(x,y,p,[],w) lets you specify the weights w in the error
measure, as a vector of nonnegative entries of the same size as x.

values = csaps(x,y,p,xx) is the same as fnval(csaps(x,y,p),xx).

csaps(x,y,p,xx,w) is the same as fnval(csaps(x,y,p,[],w),xx).

[...] = csaps({x1,...,xm},y,...) provides the ppform of an
m-variate tensor-product smoothing spline to data on a rectangular
grid. Here, the first argument is a cell-array, containing the vectors
x1, ..., xm, of lengths n1, ..., nm, respectively. Correspondingly, y is an
array of size [n1,...,nm] (or of size [d,n1,...,nm] in case the data
are d-valued), with the given (perhaps noisy) value at the
grid site ).

In this case, p if input must be a cell-array with m entries or else an
m-vector, except that it may also be a scalar or empty, in which case it
is taken to be the cell-array whose m entries all equal the p input. The
optional second output argument will always be a cell-array with m
entries.

Further, w if input must be a cell-array with m entries, with w{i} either
empty, to indicate the default choice, or else a nonnegative vector of
the same size as xi.

Examples Example 1.

x = linspace(0,2*pi,21); y = sin(x)+(rand(1,21)-.5)*.1;
pp = csaps(x,y, .4, [], [ones(1,10), repmat(5,1,10), 0] );

returns a smooth fit to the (noisy) data that is much closer to the data
in the right half, because of the much larger error weight there, except
for the last data point, for which the weight is zero.
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pp1 = csaps(x,y, [.4,ones(1,10),repmat(.2,1,10)], [], ...
[ones(1,10), repmat(5,1,10), 0]);

uses the same data, smoothing parameter, and error weight but chooses
the roughness weight to be only .2 in the right half of the interval and
gives, correspondingly, a rougher but better fit there, except for the
last data point, which is ignored.

A plot showing both examples for comparison can now be obtained by

fnplt(pp); hold on, fnplt(pp1,'r--'), plot(x,y,'ok'), hold off
title(['cubic smoothing spline, with right half treated ',...

'differently:'])
xlabel(['blue: larger error weights; ', ...

'red dashed: also smaller roughness weights'])

The resulting plot is shown below.

0 1 2 3 4 5 6 7
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1.5
cubic smoothing spline, with right half treated differently:

blue: larger error weights; red dashed: also smaller roughness weights
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Example 2. As a bivariate example, we add some uniform noise, from
the interval [-1/2 .. 1/2], to values of the MATLAB peaks function on
a 51-by-61 uniform grid, obtain smoothed values for these data from
csaps, along with the smoothing parameters chosen by csaps, and then
plot these smoothed values.

x = {linspace(-2,3,51),linspace(-3,3,61)};
[xx,yy] = ndgrid(x{1},x{2}); y = peaks(xx,yy);
rand('state',0), noisy = y+(rand(size(y))-.5);
[smooth,p] = csaps(x,noisy,[],x);
surf(x{1},x{2},smooth.'), axis off

Note the need to transpose the array smooth. For a somewhat smoother
approximation, use a slightly smaller value of p than the one, .9998889,
used above by csaps. The final plot is obtained by the following:

smoother = csaps(x,noisy,.996,x);
figure, surf(x{1},x{2},smoother.'), axis off
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Algorithm csaps is an implementation of the Fortran routine SMOOTH from PGS.

The default value for p is determined as follows. The calculation of
the smoothing spline requires the solution of a linear system whose
coefficient matrix has the form p*A + (1-p)*B, with the matrices A
and B depending on the data sites x. The default value of p makes
p*trace(A) equal (1-p)*trace(B).

See Also csape, spap2, spaps, tpaps
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Purpose "Natural" or periodic interpolating cubic spline curve

Syntax curve = cscvn(points)

Description curve = cscvn(points) returns a parametric variational, or natural,
cubic spline curve (in ppform) passing through the given sequence

. The parameter value for the point is chosen
by Eugene Lee’s [1] centripetal scheme, i.e., as accumulated square
root of chord length:

If the first and last point coincide (and there are no other repeated
points), then a periodic cubic spline curve is constructed. However,
double points result in corners.

Examples The following provides the plot of a questionable curve through some
points (marked as circles):

points=[0 1 1 0 -1 -1 0 0; 0 0 1 2 1 0 -1 -2];
fnplt(cscvn(points)); hold on,
plot(points(1,:),points(2,:),'o'), hold off

Here is a closed curve, good for 14 February, with one double point:

c=fnplt(cscvn([0 .82 .92 0 0 -.92 -.82 0; .66 .9 0 ...
-.83 -.83 0 .9 .66])); fill(c(1,:),c(2,:),'r'), axis equal

Algorithm The break sequence t is determined as

t = cumsum([0;((diff(points.').^2)*ones(d,1)).^(1/4)]).';

and csape (with either periodic or variational end conditions) is used to
construct the smooth pieces between double points (if any).

See Also csape, fnplt, getcurve, getcurv2
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References [1] E. T. Y. Lee. “Choosing nodes in parametric curve interpolation.”
Computer-Aided Design 21 (1989), 363–370.
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Purpose Convert to specified form

Syntax g = fn2fm(f,form)
sp = fn2fm(f,'B-',sconds)
fn2fm(f)

Description g = fn2fm(f,form) describes the same function as is described by f,
but in the form specified by the string form. Choices for form are 'B-',
'pp', 'BB', 'rB', 'rp', for the B-form, the ppform, the BBform, and the
two rational spline forms, respectively.

The B-form describes a function as a weighted sum of the B-splines
of a given order k for a given knot sequence, and the BBform (or,
Bernstein-Bézier form) is the special case when each knot in that
sequence appears with maximal multiplicity, k. The ppform describes
a function in terms of its local polynomial coefficients. The B-form is
good for constructing and/or shaping a function, while the ppform is
cheaper to evaluate.

Conversion from a polynomial form to the corresponding rational form
is possible only if the function in the polynomial form is vector-valued,
in which case its last component is designated as the denominator.
Converting from a rational form to the corresponding polynomial form
simply reverses this process by reinterpreting the denominator of
the function in the rational form as an additional component of the
piecewise polynomial function.

Conversion to or from the stform is not possible at present.

If form is 'B-' (and f is in ppform), then the actual smoothness of
the function in f across each of its interior breaks has to be guessed.
This is done by looking, for each interior break, for the first derivative
whose jump across that break is not small compared to the size of that
derivative nearby. The default tolerance used in this is 1.e-12.

sp = fn2fm(f,'B-',sconds) permits you to supply, as the input
argument sconds, a tolerance (strictly between 0 and 1) to be used in
the conversion from ppform to B-form.
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Alternatively, you can input sconds as a vector with integer entries,
with at least as many entries as the ppform in f has interior breaks.
In that case, sconds(i) specifies the number of smoothness conditions
to be used across the ith interior break. If the function in f is a tensor
product, then sconds, if given, must be a cell array.

fn2fm(f) converts a possibly old version of a form into its present
version.

Examples sp = fn2fm(spline(x,y),'B-') gives the interpolating cubic spline
provided by the MATLAB command spline, but in B-form rather than
in ppform.

p0 = ppmak([0 1],[3 0 0]);
p1 = fn2fm(fn2fm(fnrfn(p0,[.4 .6]),'B-'),'pp');

gives p1 identical to p0 (up to round-off in the coefficients) since the
spline has no discontinuity in any derivative across the additional
breaks introduced by fnrfn, hence conversion to B-form ignores these
additional breaks, and conversion to ppform does not retain any knot
multiplicities (like the knot multiplicities introduced, by conversion to
B-form, at the endpoints of the spline’s basic interval).

Algorithm For a multivariate (tensor-product) function, univariate algorithms are
applied in each variable.

For the conversion from B-form (or BBform) to ppform, the utility
command sprpp is used to convert the B-form of all polynomial pieces
to their local power form, using repeated knot insertion at the left
endpoint.

The conversion from B-form to BBform is accomplished by inserting
each knot enough times to increase its multiplicity to the order of the
spline.

The conversion from ppform to B-form makes use of the dual functionals
discussed in Chapter 3, “Splines: An Overview” Without further
information, such a conversion has to ascertain the actual smoothness
across each interior break of the function in f.
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See Also ppmak, spmak, rsmak, stmak

Cautionary
Note

When going from B-form to ppform, any jump discontinuity at the
first and last knot, t(1) or t(end), will be lost since the ppform
considers f to be defined outside its basic interval by extension of
the first, respectively, the last polynomial piece. For example, while
sp=spmak([0 1],1) gives the characteristic function of the interval
[0..1], pp=fn2fm(spmak([0 1],1),'pp') is the constant polynomial,

.
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Purpose Name and part(s) of form

Syntax [out1,...,outn] = fnbrk(f,part1,...,partm)
fnbrk(f,interval)
fnbrk(pp,j)
fnbrk(f)

Description [out1,...,outn] = fnbrk(f,part1,...,partm) returns the part(s)
of the form in f specified by part1,...,partn (assuming that n<=m).
These are the parts used when the form was put together, in spmak or
ppmak or rpmak or rsmak or stmak, but also other parts derived from
these.

You only need to specify the beginning character(s) of the revelant
string.

Regardless of what particular form f is in, parti can be one of the
following.

'form' The particular form used

'variables' The dimension of the function’s domain

'dimension' The dimension of the function’s target

'coefficients' The coefficients in that particular form

'interval' The basic interval of that form

Depending on the form in f, additional parts may be asked for.

If f is in B-form (or BBform or rBform), then additional choices for
parti are .

'knots' The knot sequence

'coefficients' The B-spline coefficients

'number' The number of coefficients

'order' The polynomial order of the spline
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If f is in ppform (or rpform), then additional choices for parti are

'breaks' The break sequence

'coefficients' The local polynomial coefficients

'pieces' The number of polynomial pieces

'order' The polynomial order of the spline

'guide' The local polynomial coefficients, but in the
form needed for PPVALU in PGS

If the function in f is multivariate, then the corresponding multivariate
parts are returned. This means, e.g., that knots, breaks, and the basic
interval, are cell arrays, the coefficient array is, in general, higher than
two-dimensional, and order, number and pieces are vectors.

If f is in stform, then additional choices for parti are

'centers' The centers

'coefficients' The coefficients

'number' Number of coefficients or terms

'type' The particular type

fnbrk(f,interval) with interval a 1-by-2 matrix [a b] with a<b
does not return a particular part. Rather, it returns a description of
the univariate function described by f and in the same form but with
the basic interval changed, to the interval given. If, instead, interval
is [ ], f is returned unchanged. This is of particular help when the
function in f is -variate, in which case interval must be a cell array
with entries, with the th entry specifying the desired interval in
the th dimension. If that th entry is [ ], the basic interval in the th
dimension is unchanged.

fnbrk(pp,j) , with pp the ppform of a univariate function and j a
positive integer, does not return a particular part, but returns the
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ppform of the jth polynomial piece of the function in pp. If pp is the
ppform of an -variate function, then j must be a cell array of length
. In that case, each entry of j must be a positive integer or else an

interval, to single out a particular polynomial piece or else to specify the
basic interval in that dimension.

fnbrk(f) returns nothing, but a description of the various parts of the
form is printed at the command line instead.

Examples If p1 and p2 contain the B-form of two splines of the same order, with
the same knot sequence, and the same target dimension, then

p1plusp2 = spmak(fnbrk(p1,'k'),fnbrk(p1,'c')+fnbrk(p2,'c'));

provides the (pointwise) sum of those two functions.

If pp contains the ppform of a bivariate spline with at least four
polynomial pieces in the first variable, then ppp=fnbrk(pp,{4,[-1
1]}) gives the spline that agrees with the spline in pp on the rectangle
[b4 .. b5] x [-1 .. 1] , where b4, b5 are the fourth and fifth entry in the
break sequence for the first variable.

See Also ppmak,rpmak,rsmak, spmak, stmak
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Purpose Change part(s) of form

Syntax f = fnchg(f,part,value)

Description f = fnchg(f,part,value) returns the given function description f
but with the specified part changed to the specified value.

The string part can be (the beginning character(s) of) :

'dimension' The dimension of the function’s target

'interval' The basic interval of that form

The specified value for part is not checked for consistency with the
rest of the description in f in case the string part terminates with the
letter z.

Examples fndir(f,directions) returns a vector-valued function even when the
function described by f is ND-valued.You can correct this by using
fnchg as follows:

fdir = fnchg( fndir(f,directions),...
'dim',[fnbrk(f,'dim'),size(directions,2)] );

See Also fnbrk
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Purpose Arithmetic with function(s)

Syntax fn = fncmb(function,operation)
f = fncmb(function,function)
fncmb(function,matrix,function)
fncmb(function,matrix,function,matrix)
f = fncmb(function,op,function)

Description The intent is to make it easy to carry out the standard linear operations
of scaling and adding within a spline space without having to deal
explicitly with the relevant parts of the function(s) involved.

fn = fncmb(function,operation) returns (a description of) the function
obtained by applying to the values of the function in function the
operation specified by operation. The nature of the operation depends
on whether operation is a scalar, a vector, a matrix, or a string, as
follows .

Scalar Multiply the function by that scalar.

Vector Add that vector to the function’s values; this
requires the function to be vector-valued.

Matrix Apply that matrix to the function’s
coefficients.

String Apply the function or M-file, specified by
that string, to the function’s coefficients.

The remaining options only work for univariate functions. See
Limitations for more information.

f = fncmb(function,function) returns (a description of) the pointwise
sum of the two functions. The two functions must be of the same form.
This particular case of just two input arguments is not included in the
above table since it only works for univariate functions.

fncmb(function,matrix,function) is the same as
fncmb(fncmb(function,matrix),function).
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fncmb(function,matrix,function,matrix) is the same as
fncmb((fncmb(function,matrix),fncmb(function,matrix)).

f = fncmb(function,op,function) returns the ppform of the spline
obtained by the pointwise combining of the two functions, as specified
by the string op. op can be one of the strings '+', '-', '*'. If the
second function is to be a constant, it is sufficient simply to supply
here that constant.

Examples fncmb(fn,3.5) multiplies (the coefficients of) the function in fn by 3.5.

fncmb(f,3,g,-4) returns the linear combination, with weights 3 and
-4, of the function in f and the function in g.

fncmb(f,3,g) adds 3 times the function in f to the function in g.

If the function in f happens to be scalar-valued, then
f3=fncmb(f,[1;2;3]) contains the description of the function whose
value at is the 3-vector . Note that, by the
convention throughout this toolbox, the subsequent statement
returns a 1-column-matrix.

If f describes a surface in , i.e., the function in f is 3-vector-valued
bivariate, then f2 = fncmb(f,[1 0 0;0 0 1]) describes the projection
of that surface to the -plane.

The following commands produce the picture of a ... spirochete?

c = rsmak('circle');
fnplt(fncmb(c,diag([1.5,1]))); axis equal, hold on
sc = fncmb(c,.4);
fnplt(fncmb(sc,-[.2;-.5]))
fnplt(fncmb(sc,-[.2,-.5]))
hold off, axis off

If t is a knot sequence of length n+k and a is a matrix with n columns,
then fncmb(spmak(t,eye(n)),a) is the same as spmak(t,a).

fncmb(spmak([0:4],1),'+',ppmak([-1 5],[1 -1])) is the
piecewise-polynomial with breaks -1:5 that, on the interval [0 .. 4],
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agrees with the function (but has no active
break at 0 or 1, hence differs from this function outside the interval
[0 .. 4]).

fncmb(spmak([0:4],1),'-',0) has the same effect as
fn2fm(spmak([0:4],1),'pp').

Assuming that sp describes the B-form of a spline of order <k, the
output of

fn2fm(fncmb(sp,'+',ppmak(fnbrk(sp,'interv'),zeros(1,k))),'B-')

describes the B-form of the same spline, but with its order raised to k.

Algorithm The coefficients are extracted (via fnbrk) and operated on by
the specified matrix or operation (and, possibly, added), then
recombined with the rest of the function description (via ppmak,
spmak,rpmak,rsmak,stmak). To be sure, when the function is rational,
the matrix is only applied to the coefficients of the numerator. Again,
if we are to translate the function values by a given vector and the
function is in ppform, then only the coefficients corresponding to
constant terms are so translated.

If there are two functions input, then they must be of the same type (see
Limitations, below) except for the following.

fncmb(f1,op,f2) returns the ppform of the function

with op one of '+', '-', '*', and f1, f2 of arbitrary polynomial form.
If, in addition, f2 is a scalar or vector, it is taken to be the function that
is constantly equal to that scalar or vector.

Limitations fncmb only works for univariate functions, except for the case
fncmb(function,operation), i.e., when there is just one function in
the input.

Further, if two functions are involved, then they must be of the same
type. This means that they must either both be in B-form or both be in
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ppform, and, moreover, have the same knots or breaks, the same order,
and the same target. The only exception to this is the command of the
form fncmb(function,op,function).
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Purpose Differentiate function

Syntax fprime = fnder(f,dorder)
fnder(f)

Description fprime = fnder(f,dorder) is the description of the dorderth
derivative of the function whose description is contained in f. The
default value of dorder is 1. For negative dorder, the particular
|dorder|th indefinite integral is returned that vanishes |dorder|-fold
at the left endpoint of the basic interval.

The output is of the same form as the input, i.e., they are both ppforms
or both B-forms or both stforms. fnder does not work for rational
splines; for them, use fntlr instead. fnder works for stforms only in a
limited way: if the type is tp00, then dorder can be [1,0] or [0,1].

fnder(f) is the same as fnder(f,1).

If the function in f is multivariate, say -variate, then dorder must be
given, and must be of length .

Examples If f is in ppform, or in B-form with its last knot of sufficiently high
multiplicity, then, up to rounding errors, f and fnder(fnint(f)) are
the same.

If f is in ppform and fa is the value of the function in f at the
left end of its basic interval, then, up to rounding errors, f and
fnint(fnder(f),fa) are the same, unless the function described by f
has jump discontinuities.

If f contains the B-form of , and is its leftmost knot, then, up to
rounding errors, fnint(fnder(f)) contains the B-form of .
However, its leftmost knot will have lost one multiplicity (if it had
multiplicity > 1 to begin with). Also, its rightmost knot will have full
multiplicity even if the rightmost knot for the B-form of in f doesn’t.

Here is an illustration of this last fact. The spline in sp = spmak([0 0
1], 1) is, on its basic interval [0..1], the straight line that is 1 at 0 and
0 at 1. Now integrate its derivative: spdi = fnint(fnder(sp)). As
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you can check, the spline in spdi has the same basic interval, but, on
that interval, it agrees with the straight line that is 0 at 0 and -1 at 1.

See the demos “Intro to B-form” and “Intro to ppform” for examples.

Algorithm For differentiation of either polynomial form, the derivatives are found
in the piecewise-polynomial sense. This means that, in effect, each
polynomial piece is differentiated separately, and jump discontinuities
between polynomial pieces are ignored during differentiation.

For the B-form, the formulas [PGS; (X.10)] for differentiation are used.

For the stform, differentiation relies on knowing a formula for the
relevant derivative of the basis function of the particular type.

See Also fndir, fnint, fnplt, fnval
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Purpose Directional derivative of function

Syntax df = fndir(f,y)

Description df = fndir(f,y) is the ppform of the directional derivative, of the
function in f, in the direction of the (column-)vector y. This means

that df describes the function .

If y is a matrix, with n columns, and is d-valued, then the function in
df is prod(d)*n-valued. Its value at , reshaped to be of size [d,n], has
in its th ‘column’ the directional derivative of at in the direction
of the th column of y. If you prefer df to reflect explicitly the actual
size of , use instead

df = fnchg( fndir(f,y), 'dim',[fnbrk(f,'dim'),size(y,2)] );

Since fndir relies on the ppform of the function in f, it does not work
for rational functions nor for functions in stform.

Examples For example, if f describes an m-variate d-vector-valued function and
x is some point in its domain, then, e.g., with this particular ppform f
that describes a scalar-valued bilinear polynomial,

f = ppmak({0:1,0:1},[1 0;0 1]); x = [0;0];
[d,m] = fnbrk(f,'dim','var');
jacobian = reshape(fnval(fndir(f,eye(m)),x),d,m)

is the Jacobian of that function at that point (which, for this particular
scalar-valued function, is its gradient, and it is zero at the origin).

As a related example, the next statements plot the gradients of (a good
approximation to) the Franke function at a regular mesh:

xx = linspace(-.1,1.1,13); yy = linspace(0,1,11);
[x,y] = ndgrid(xx,yy); z = franke(x,y);
pp2dir = fndir(csapi({xx,yy},z),eye(2));
grads = reshape(fnval(pp2dir,[x(:) y(:)].'),...

[2,length(xx),length(yy)]);
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quiver(x,y,squeeze(grads(1,:,:)),squeeze(grads(2,:,:)))

Here is the resulting plot.
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Algorithm The function in f is converted to ppform, and the directional derivative
of its polynomial pieces is computed formally and in one vector
operation, and put together again to form the ppform of the directional
derivative of the function in f.

See Also fnchg, fnder, fnint, franke
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Purpose Integrate function

Syntax intgrf = fnint(f,value)
fnint(f)

Description intgrf = fnint(f,value) is the description of an indefinite integral
of the univariate function whose description is contained in f. The
integral is normalized to have the specified value at the left endpoint of
the function’s basic interval, with the default value being zero.

The output is of the same type as the input, i.e., they are both ppforms
or both B-forms. fnint does not work for rational splines nor for
functions in stform.

fnint(f) is the same as fnint(f,0).

Indefinite integration of amultivariate function, in coordinate directions
only, is available via fnder(f,dorder) with dorder having nonpositive
entries.

Examples The statement diff(fnval(fnint(f),[a b])) provides the definite
integral over the interval [a .. b] of the function described by f.

If f is in ppform, or in B-form with its last knot of sufficiently high
multiplicity, then, up to rounding errors, f and fnder(fnint(f)) are
the same.

If f is in ppform and fa is the value of the function in f at the
left end of its basic interval, then, up to rounding errors, f and
fnint(fnder(f),fa) are the same, unless the function described by f
has jump discontinuities.

If f contains the B-form of , and is its leftmost knot, then, up to
rounding errors, fnint(fnder(f)) contains the B-form of .
However, its leftmost knot will have lost one multiplicity (if it had
multiplicity > 1 to begin with). Also, its rightmost knot will have full
multiplicity even if the rightmost knot for the B-form of in f doesn’t.

Here is an illustration of this last fact. The spline in sp = spmak([0 0
1], 1) is, on its basic interval [0..1], the straight line that is 1 at 0 and
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0 at 1. Now integrate its derivative: spdi = fnint(fnder(sp)). As
you can check, the spline in spdi has the same basic interval, but, on
that interval, it agrees with the straight line that is 0 at 0 and -1 at 1.

See the demos “Intro to B-form” and “Intro to ppform” for examples.

Algorithm For the B-form, the formula [PGS; (X.22)] for integration is used.

See Also fnder, fnplt, fnval
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Purpose Jumps, i.e., f(x+)-f(x-)

Syntax jumps = fnjmp(f,x)

Description jumps = fnjmp(f,x) is like fnval(f,x), -- except that it returns the
jump across x (rather than the value at x) of the function
described by f and that it only works for univariate functions.

This is a function for spline specialists.

Examples fnjmp(ppmak(1:4,1:3),1:4) returns the vector [0,1,1,0] since the
pp function here is 1 on [1 .. 2], 2 on [2 .. 3], and 3 on [3 .. 4], hence has
zero jump at 1 and 4 and a jump of 1 across both 2 and 3.

If x is cos([4:-1:0]*pi/4), then fnjmp(fnder(spmak(x,1),3),x)
returns the vector [12 -24 24 -24 12] (up to round-off). This is
consistent with the fact that the spline in question is a so called perfect
cubic B-spline, i.e., has an absolutely constant third derivative (on its
basic interval). The modified command

fnjmp(fnder(fn2fm(spmak(x,1),'pp'),3),x)

returns instead the vector [0 -24 24 -24 0], consistent with the
fact that, in contrast to the B-form, a spline in ppform does not have
a discontinuity in any of its derivatives at the endpoints of its basic
interval. Note that fnjmp(fnder(spmak(x,1),3),-x) returns the
vector [12,0,0,0,12] since -x, though theoretically equal to x, differs
from x by roundoff, hence the third derivative of the B-spline provided
by spmak(x,1) does not have a jump across -x(2),-x(3), and -x(4).

11-45



fnmin

Purpose Minimum of function in given interval

Syntax fnmin(f)
fnmin(f,interv)
[minval,minsite] = fnmin(f,...)

Description fnmin(f) returns the minimum value of the scalar-valued univariate
spline in f on its basic interval.

fnmin(f,interv) returns the minimum value on the interval [a..b]
specified by interv.

[minval,minsite] = fnmin(f,...) also returns a location, minsite,
at which the function in f takes that minimum value, minval.

Examples Example 1. We construct and plot a spline with many local extrema,
then compute its maximum as the negative of the minimum of . We
indicate this maximum value by adding a horizontal line to the plot at
the height of the computed maximum.

rand('seed',21);
f = spmak(1:21,rand(1,15)-.5);
fnplt(f)
maxval = -fnmin(fncmb(f,-1));
hold on, plot(fnbrk(f,'interv'),maxval([1 1])), hold off
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Example 2. Since spmak(1:5,-1) provides the negative of the cubic
B-spline with knot sequence 1:5, we expect the command

[y,x] = fnmin(spmak(1:5,-1))

to return -2/3 for y and 3 for x.

Algorithm fnmin first changes the basic interval of the function to the given
interval, if any. On the interval, fnmin then finds all local extrema
of the function as left and right limits at a jump and as zeros of the
function’s first derivative. It then evaluates the function at these
extrema and at the endpoints of the interval, and determines the
minimum over all these values.

See Also fnval, fnzeros
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Purpose Plot function

Syntax fnplt(f)
fnplt(f,arg1,arg2,arg3,arg4)
points = fnplt(f,...)
[points, t] = fnplt(f,...)

Description fnplt(f) plots the function, described by f, on its basic interval.

If is univariate, the following is plotted:

• If is scalar-valued, the graph of is plotted.

• If is 2-vector-valued, the planar curve is plotted.

• If is -vector-valued with , the space curve given by the first
three components of is plotted.

If is bivariate, the following is plotted:

• If is scalar-valued, the graph of is plotted (via surf).

• If is 2-vector-valued, the image in the plane of a regular grid in its
domain is plotted.

• If is -vector-valued with , then the parametric surface given
by the first three components of its values is plotted (via surf).

If is a function of more than two variables, then the bivariate function,
obtained by choosing the midpoint of the basic interval in each of the
variables other than the first two, is plotted.

fnplt(f,arg1,arg2,arg3,arg4) permits you to modify the plotting
by the specification of additional input arguments. You can place these
arguments in whatever order you like, chosen from the following list:

• A string that specifies a plotting symbol, such as '-.' or '*'; the
default is '-'.

• A scalar to specify the linewidth; the default value is 1.
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• A string that starts with the letter 'j' to indicate that any jump in
the univariate function being plotted should actually appear as a
jump. The default is to fill in any jump by a (near-)vertical line.

• A vector of the form [a,b], to indicate the interval over which to plot
the univariate function in f. If the function in f is -variate, then
this optional argument must be a cell array whose ith entry specifies
the interval over which the ith argument is to vary. In effect, for
this arg, the command fnplt(f,arg,...) has the same effect as
the command fnplt(fnbrk(f,arg),...). The default is the basic
interval of f.

• An empty matrix or string, to indicate use of default(s). You will
find this option handy when your particular choice depends on some
other variables.

points = fnplt(f,...) plots nothing, but the two-dimensional
points or three-dimensional points it would have plotted are returned
instead.

[points, t] = fnplt(f,...) also returns, for a vector-valued f, the
corresponding vector t of parameter values.

Algorithm The univariate function described by f is evaluated at 101 equally
spaced sites x filling out the plotting interval. If is real-valued, the
points are plotted. If is vector-valued, then the first two or
three components of are plotted.

The bivariate function described by f is evaluated on a 51-by-51
uniform grid if is scalar-valued or -vector-valued with and
the result plotted by surf. In the contrary case, is evaluated along
the meshlines of a 11-by-11 grid, and the resulting planar curves are
plotted.

See Also fnder, fnint, fnval

11-49



fnplt

Cautionary
Note

The basic interval for in B-form is the interval containing all the
knots. This means that, e.g., is sure to vanish at the endpoints of
the basic interval unless the first and the last knot are both of full
multiplicity , with the order of the spline . Failure to have such full
multiplicity is particularly annoying when is a spline curve, since the
plot of that curve as produced by fnplt is then bound to start and finish
at the origin, regardless of what the curve might otherwise do.

Further, since B-splines are zero outside their support, any function
in B-form is zero outside the basic interval of its form. This is very
much in contrast to a function in ppform whose values outside the
basic interval of the form are given by the extension of its leftmost,
respectively rightmost, polynomial piece.
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Purpose Refine partition of form

Syntax g = fnrfn(f,addpts)

Description g = fnrfn(f,addpts) describes the same function as does f, but
uses more terms to do it. This is of use when the sum of two or more
functions of different forms is wanted or when the number of degrees
of freedom in the form is to be increased to make fine local changes
possible. The precise action depends on the form in f.

If the form in f is a B-form or BBform, then the entries of addpts
are inserted into the existing knot sequence, subject to the following
restriction: The multiplicity of no knot exceed the order of the spline.
The equivalent B-form with this refined knot sequence for the function
given by f is returned.

If the form in f is a ppform, then the entries of addpts are inserted into
the existing break sequence, subject to the following restriction: The
break sequence be strictly increasing. The equivalent ppform with this
refined break sequence for the function in f is returned.

fnrfn does not work for functions in stform.

If the function in f is m-variate, then addpts must be a cell array,
{addpts1,..., addptsm}, and the refinement is carried out in each of
the variables. If the ith entry in this cell array is empty, then the knot
or break sequence in the ith variable is unchanged.

Examples See fncmb for the use of fnrfn to refine the knot or break sequences of
two splines to a common refinement before forming their sum.

Algorithm The standard knot insertion algorithm is used for the calculation of
the B-form coefficients for the refined knot sequence, while Horner’s
method is used for the calculation of the local polynomial coefficients at
the additional breaks in the refined break sequence.

See Also fncmb, ppmak, spmak
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Purpose Taylor coefficients or polynomial

Syntax taylor = fntlr(f,dorder,x)
p = fntlr(f,dorder,x,interv)

Description taylor = fntlr(f,dorder,x) returns the unnormalized Taylor
coefficients, up to the given order dorder and at the given x, of the
function described in f .

For a univariate function and a scalar x, this is the vector

If, more generally, the function in f is d-valued with d>1 or
even prod(d)>1 and/or is m-variate for some m>1, then dorder is
expected to be an m-vector of positive integers, x is expected to
be a matrix with m rows, and, in that case, the output is of size
[prod(d)*prod(dorder),size(x,2)], with its j-th column containing

for i1=1:dorder(1), ..., im=1:dorder(m). Here, is the partial
derivative of with respect to its th argument.

p = fntlr(f,dorder,x,interv) returns instead a ppform of the
Taylor polynomial at x of order dorder for the function described by f.
The basic interval for this ppform is as specified by interv. In this case
and assuming that the function described by f is m-variate, x is expected
to be of size [m,1], and interv is either of size [m,2] or else a cell array
of length m containing m vectors of size [1,2].

Examples If f contains a univariate function and x is a scalar or a 1-row matrix,
then fntlr(f,3,x) produces the same output as the statements

df = fnder(f); [fnval(f,x); fnval(df,x); fnval(fnder(df),x)];

11-52



fntlr

As a more complicated example, look at the Taylor vectors of order 3
at 21 equally spaced points for the rational spline whose graph is the
unit circle:

ci = rsmak('circle'); in = fnbrk(ci,'interv');
t = linspace(in(1),in(2),21); t(end)=[];
v = fntlr(ci,3,t);

We plot ci along with the points v(1:2,:), to verify that these are,
indeed, points on the unit circle.

fnplt(ci), hold on, plot(v(1,:),v(2,:),'o')

Next, to verify that v(3:4,j) is a vector tangent to the circle at the
point v(1:2,j), we use the MATLAB quiver command to add the
corresponding arrows to our plot:

quiver(v(1,:),v(2,:),v(3,:),v(4,:))

Finally, what about v(5:6,:)? These are second derivatives, and we
add the corresponding arrows by the following quiver command, thus
finishing First and Second Derivative of a Rational Spline Giving a
Circle on page 11-54.

quiver(v(1,:),v(2,:),v(5,:),v(6,:)), axis equal, hold off
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First and Second Derivative of a Rational Spline Giving a Circle

Now, our curve being a circle, you might have expected the 2nd
derivative arrows to point straight to the center of that circle, and that
would have been indeed the case if the function in ci had been using
arclength as its independent variable. Since the parameter used is not
arclength, we use the formula, given in “Example: A Spline Curve” on
page 5-10, to compute the curvature of the curve given by ci at these
selected points. For ease of comparison, we switch over to the variables
used there and then simply use the commands from there.

dspt = v(3:4,:); ddspt = v(5:6,:);
kappa = abs(dspt(1,:).*ddspt(2,:)-dspt(2,:).*ddspt(1,:))./...

(sum(dspt.^2)).^(3/2);
max(abs(kappa-1))
ans = 2.2204e-016

The numerical answer is reassuring: at all the points tested, the
curvature is 1 to within roundoff.
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The Function 1/(1+x^2+y^2) and Its Taylor Polynomial of Order [3,3]
at the Origin

As a final example, we start with a bivariate version of the Runge

function, obtaining, for variety, a ppform for its denominator, ,
by bicubic spline interpolation:

w = csapi({-1:1,-1:1},[3 2 3;2 1 2;3 2 3]);

Next, we make up the coefficient array for the numerator, 1, using
exactly the same size, and put the two together into a rational spline:

wcoefs = fnbrk(w,'coef');
scoefs = zeros(size(wcoefs)); scoefs(end)=1;
runge2 = rpmak(fnbrk(w,'breaks'),[scoefs;wcoefs]);

Then we enlarge the basic interval for this rational spline, plot it and
plot, on top of it, its Taylor polynomial at (0,0) of order [3,3].

fnplt(fnbrk(runge2,{[-2 2],[-2 2]})); shading interp, hold on
fnplt(fntlr(runge2,[3 3],[0;0],[-.7 .7; -.7 .7]))
axis off, hold off
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Since we shaded the function but not the Taylor polynomial, we can
easily distinguish the two in the previous figure. We can also see that,
in contrast to the function, the Taylor polynomial fails to be rotationally
symmetric. This is due to the fact that it is a polynomial of order [3,3]
rather than a polynomial of total order 3.

To obtain the Taylor polynomial of order 3, we get the Taylor polynomial
of order [3,3], but with (0,0) the left point of its basic interval, set all
its coefficients of total order bigger than 3 equal to zero, and then
reconstruct the polynomial, and plot it, choosing a different view in
order to show off the Taylor polynomial better. Here are the commands
and the resulting figure.

taylor = fntlr(runge2,[3 3],[0;0],[0 1;0 1]);
tcoef = fnbrk(taylor,'coe'); tcoef([1 2 4]) = 0;
taylor2 = fnbrk(ppmak(fnbrk(taylor,'br'),tcoef),{[-1 1],[-1
1]});
fnplt(fnbrk(runge2,{[-2 2],[-2 2]})); shading interp, hold on
fnplt(taylor2), view(-28,-26), axis off, hold off
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The Function 1/(1+x^2+y^2) and Its Taylor Polynomial of Order 3 at
the Origin

See Also fnder, fndir
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Purpose Evaluate function

Syntax v = fnval(f,x)
fnval(x,f)
fnval(...,'l')

Description v = fnval(f,x) and v = fnval(x,f) both provide the value at
the points in x of the function whose description is contained in f.

Roughly speaking, the output v is obtained by replacing each entry of x
by the value of at that entry. This is literally true in case the function
in f is scalar-valued and univariate, and is the intent in all other cases,
except that, for a d-valued m-variate function, this means replacing
m-vectors by d-vectors. The full details are as follows.

For a univariate :

• If is scalar-valued, then v is of the same size as x.

• If is [d1,...,dr]-valued, and x has size [n1,...,ns], then v has
size [d1,...,dr, n1,...,ns], with v(:,...,:, j1,...,js) the
value of at x(j1,...,js), – except that

(1) n1 is ignored if it is 1 and s is 2, i.e., if x is a row vector; and

(2) MATLAB ignores any trailing singleton dimensions of x.

For an m-variate with m>1, with [d1,...,dr]-valued, x may be
either an array, or else a cell array {x1,...,xm}.

• If x is an array, of size [n1,...,ns] say, then n1 must equal m, and v
has size [d1,...,dr, n2,...,ns], with v(:,...,:, j2,...,js)
the value of at x(:,j2,...,js), – except that

(1) d1, ..., dr is ignored in case is scalar-valued, i.e., both r and
n1 are 1;

(2) MATLAB ignores any trailing singleton dimensions of x.

• If x is a cell array, then it must be of the form {x1,...,xm}, with
xj a vector, of length nj, and, in that case, v has size [d1,...,dr,
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n1,...,nm], with v(:,...,:, j1,...,jm) the value of at (x1(j1),
..., xm(jm)), – except that d1, ..., dr is ignored in case is scalar-valued,
i.e., both r and n1 are 1.

If has a jump discontinuity at x, then the value , i.e., the limit
from the right, is returned, except when x equals the right end of the
basic interval of the form; for such x, the value , i.e., the limit from
the left, is returned.

fnval(x,f) is the same as fnval(f,x).

fnval(...,'l') treats as continuous from the left. This means that
if has a jump discontinuity at x, then the value , i.e., the limit
from the left, is returned, except when x equals the left end of the basic
interval; for such x, the value is returned.

If the function is multivariate, then the above statements concerning
continuity from the left and right apply coordinatewise.

Examples The statement fnval(csapi(x,y),xx) has the same effect as the
statement csapi(x,y,xx).

Algorithm For each entry of x, the relevant break- or knot-interval is determined
and the relevant information assembled. Depending on whether f is in
ppform or in B-form, nested multiplication or the B-spline recurrence
(see, e.g., [PGS; X.(3)]) is then used vector-fashion for the simultaneous
evaluation at all entries of x. Evaluation of a multivariate polynomial
spline function takes full advantage of the tensor product structure.

Evaluation of a rational spline follows up evaluation of the
corresponding vector-valued spline by division of all but its last
component by its last component.

Evaluation of a function in stform makes essential use of stcol, and
tries to keep the matrices involved to reasonable size.

See Also fnbrk, ppmak, rsmak, spmak, stmak
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Purpose Extrapolate function

Syntax g = fnxtr(f,order)
fnxtr(f)

Description g = fnxtr(f,order) returns the spline (in ppform) that agrees with
the spline in f on the latter’s basic interval but is a polynomial of the
given order outside it, with 2 the default for order, in such a way that
the spline in g satisfies at least order smoothness conditions at the
ends of f’s basic interval, i.e., at the new breaks.

f must be in B-form, BBform, or ppform.

While order can be any nonnegative integer, fnxtr is useful mainly
when order is positive but less than the order of f.

If order is zero, then g describes the same spline as fn2fm(f,'B-) but
is in ppform and has a larger basic interval.

If order is at least as big as f’s order, then g describes the same pp as
fn2fm(f,'pp') but uses two more pieces and has a larger basic interval.

If f is m-variate, then order may be an m-vector, in which case
order(i) specifies the matching order to be used in the i-th variable,
i=1:m.

If order<0, then g is exactly the same as fn2fm(f,'pp'). This unusual
option is useful when, in the multivariate case, extrapolation is to take
place in only some but not all variables.

fnxtr(f) is the same as fnxtr(f,2).

Examples Example 1. The cubic smoothing spline for given data x,y is, like any
other ‘natural’ cubic spline, required to have zero second derivative
outside the interval spanned by the data sites. Hence, if such a spline is
to be evaluated outside that interval, it should be constructed as s =
fnxtr(csaps(x,y)). A Cubic Smoothing Spline Properly Extrapolated
on page 11-61, generated by the following code, shows the difference.

rand('seed',6); x = rand(1,21); s = csaps(x,x.^3); sn = fnxtr(s);

11-60



fnxtr

fnplt(s,[-.5 1.4],3), hold on, fnplt(sn,[-.5 1.4],.5,'r',2)
legend('cubic smoothing spline','... properly extrapolated')
set(gca,'Fontsize',16), axis off, hold off

 

 

cubic smoothing spline
... properly extrapolated

A Cubic Smoothing Spline Properly Extrapolated

Example 2. Here is the plot of a bivariate B-spline, quadratically
extrapolated in the first variable and not at all extrapolated in the
second, as generated by

fnplt(fnxtr(spmak({0:3,0:4},1),[3,-1]))
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A Bivariate B-spline Quadratically Extrapolated In One Direction

See Also ppmak, spmak, fn2fm
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Purpose Find zeros of function in given interval

Syntax z = fnzeros(f)
z = fnzeros(f,[a b])

Description z = fnzeros(f) provides the 2-rowed matrix z that is an ordered list
of the zeros of the continuous univariate spline in f in its basic interval.

z = fnzeros(f,[a b]) looks for zeros only in the interval [a .. b]
specified by the input.

Each column z(:,j) contains the left and right endpoint of an interval.
These intervals are of three kinds:

• If the endpoints agree, then the function in f is relatively small at
that point.

• If the endpoints agree to many significant digits, then the function
changes sign across the interval, and the interval contains a zero of
the function — provided the function is continuous there.

• If the endpoints are not close, then the function is zero on the entire
interval.

Examples Example 1. We construct and plot a piecewise linear spline that has
each of the three kinds of zeros, use fnzeros to compute all its zeros,
and then mark the results on that graph.

sp = spmak(augknt(1:7,2),[1,0,1,-1,0,0,1]);
fnplt(sp)
z = fnzeros(sp)
nz = size(z,2);
hold on
plot(z(1,:),zeros(1,nz),'>',z(2,:),zeros(1,nz),'<'), hold off

This gives the following list of zeros:

z =
2.0000 3.5000 5.0000
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2.0000 3.5000 6.0000

In this simple example, even for the second kind of zero, the two
endpoints agree to all places.

1 2 3 4 5 6 7
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1

Example 2. We generate a spline function with many extrema and
locate all that are in a certain interval by computing the zeros of the
spline function’s first derivative there.

rand('seed',23)
sp = spmak(1:21,rand(1,16)-.5);
fnplt(sp)
z = mean(fnzeros(fnder(sp),[7,14]));
zy = fnval(sp,z);
hold on, plot(z,zy,'o'), hold off
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Example 3. We construct a spline with a zero at a jump discontinuity
and in B-form and find all the spline’s zeros in an interval that goes
beyond its basic interval.

sp = spmak([0 0 1 1 2],[1 0 -.2]);
fnplt(sp)
z = fnzeros(sp,[.5, 2.7])
zy = zeros(1,size(z,2));
hold on, plot(z(1,:),zy,'>',z(2,:),zy,'<'), hold off

This gives the following list of zeros:

z =
1.0000 2.0000
1.0000 2.7000

Notice the resulting zero interval [2..2.7], due to the fact that, by
definition, a spline in B-form is identically zero outside its basic interval.

Algorithm fnzeros first converts the function to B-form. It locates zero intervals
by the corresponding sequence of consecutive zero B-spline coefficients.
It locates the sign changes in the B-spline coefficients for the function,
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isolates them from each other by suitable knot insertion, and then uses
the Modified Regula falsi to locate the corresponding sign changes in
the function, if any.

See Also fnmin, fnval

Cautionary
Note

fnzeros may not work correctly for discontinuous functions. For
example, for the discontinuous piecewise linear function provided by

sp = spmak([0 0 1 1 2 2],[-1 1 -1 1]), fnzeros(sp)

will only find the zero in (1..2), but not the zero in (0..1) nor the jump
through zero at 1.
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Purpose Franke’s bivariate test function

Syntax z = franke(x,y)

Description z = franke(x,y) returns the value z(i) of Franke’s function at the
site (x(i),y(i)), i=1:numel(x), with z of the same size as x and y
(which must be of the same size).

Franke’s function is the following weighted sum of four exponentials:

Examples The following commands provide a plot of Franke’s function:

pts = (0:50)/50; [x,y] = ndgrid(pts,pts); z = franke(x,y);
surf(x,y,z), view(145,-2), set(gca,'Fontsize',16)

References [1] Richard Franke. “A critical comparison of some methods for
interpolation of scattered data.” Naval Postgraduate School Tech.Rep.
NPS-53-79-003, March 1979.
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Purpose Interactive creation of cubic spline curve

Syntax [xy,spcv] = getcurve

Description [xy,spcv] = getcurve displays a gridded window and asks you for
input. As you click on points in the gridded window, the broken line
connecting these points is displayed. To indicate that you are done, click
outside the gridded window. Then a cubic spline curve, spcv, through
the point sequence, xy, is computed (via cscvn) and drawn. The point
sequence and, optionally, the spline curve are output.

If you want a closed curve, place the last point close to the initial point.

If you would like the curve to have a corner at some point, click on that
point twice (or more times) in succession.

See Also cscvn
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Purpose Convert knots to breaks and their multiplicities

Syntax knt2brk(knots)
[breaks,mults] = knt2brk(knots)
m = knt2mlt(t)
[m,sortedt] = knt2mlt(t)

Description The commands extract the distinct elements from a sequence, as well
as their multiplicities in that sequence, with multiplicity taken in two
slightly different senses.

knt2brk(knots) returns the distinct elements in knots, and in
increasing order, hence is the same as unique(knots).

[breaks,mults] = knt2brk(knots) additionally provides, in
mults, the multiplicity with which each distinct element occurs
in knots. Explicitly, breaks and mults are of the same length,
and knt2brk is complementary to brk2knt in that, for any knot
sequence knots, the two commands [xi,mlts] = knt2brk(knots);
knots1 = brk2knt(xi,mlts); give knots1 equal to knots.

m = knt2mlt(t) returns a vector of the same length as t, with m(i)
counting, in the vector sort(t), the number of entries before its ith
entry that are equal to that entry. This kind of multiplicity vector is
needed in spapi or spcol where such multiplicity is taken to specify
which particular derivatives are to be matched at the sites in t.
Precisely, if t is nondecreasing and z is a vector of the same length,
then sp = spapi(knots, t, z) attempts to construct a spline s (with

knot sequence knots) for which equals , all .

[m,sortedt] = knt2mlt(t) also returns the output from sort(t).

Neither knt2brk nor knt2mlt is likely to be used by the casual user
of this toolbox.

Examples [xi,mlts]=knt2brk([1 2 3 3 1 3]) returns [1 2 3] for xi and [2
1 3] for mlts.
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[m,t]=knt2mlt([1 2 3 3 1 3]) returns [0 1 0 0 1 2] for m and
[1 1 2 3 3 3] for t.

See Also brk2knt, spapi, spcol

11-70



newknt

Purpose New break distribution

Syntax newknots = newknt(f,newl)
newknt(f)
[...,distfn] = newknt(...)

Description newknots = newknt(f,newl) returns the knot sequence whose
interior knots cut the basic interval of f into newl pieces, in such a way
that a certain piecewise linear monotone function related to the high
derivative of f is equidistributed.

The intent is to choose a knot sequence suitable to the fine
approximation of a function whose rough approximation in f is
assumed to contain enough information about to make this feasible.

newknt(f) uses for newl its default value, namely the number of
polynomial pieces in f.

[...,distfn] = newknt(...) also returns, in distfn, the ppform of
that piecewise linear monotone function being equidistributed.

Examples If the error in the least-squares approximation sp to some data x,y by
a spline of order k seems uneven, you might try for a more equitable
distribution of knots by using

spap2(newknt(sp),k,x,y);

For another example, see the last part of the demo "Solving an ODE
by Collocation".

Algorithm This is the Fortran routine NEWNOT in PGS. With the order

of the piecewise-polynomial function in pp, the function
is approximated by a piecewise constant function obtained by

local, discrete, differentiation of the variation of . The new
break sequence is chosen to subdivide the basic interval of the
piecewise-polynomial in such a way that
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Purpose Knot distribution “optimal” for interpolation

Syntax knots = optknt(tau,k,maxiter)
optknt(tau,k)

Description knots = optknt(tau,k,maxiter) provides the knot sequence t that
is best for interpolation from at the site sequence tau, with 10
the default for the optional input maxiter that bounds the number of
iterations to be used in this effort. Here, best or optimal is used in the
sense of and , and this means the following: For any recovery scheme
that provides an interpolant that matches a given at the sites

tau(1), ..., tau(n), we may determine the smallest constant for

which for all smooth functions .

Here, . Then we may look for the optimal
recovery scheme as the scheme for which is as small as
possible. Micchelli/Rivlin/Winograd have shown this to be interpolation
from , with t uniquely determined by the following conditions:

1 t(1) = ... = t(k) = tau(1);

2 t(n+1) = ... = t(n+k) = tau(n);

3 Any absolutely constant function with sign changes at the sites
t(k+1), ..., t(n) and nowhere else satisfies

Gaffney/Powell called this interpolation scheme optimal since it
provides the center function in the band formed by all interpolants to
the given data that, in addition, have their th derivative between
and (for large ).

optknt(tau,k) is the same as optknt(tau,k,10).
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Examples See the last part of the demo “Spline Interpolation” for an illustration.
For the following highly nonuniform knot sequence

t = [0, .0012+[0, 1, 2+[0,.1], 4]*1e-5, .002, 1];

the command optknt(t,3) will fail, while the command
optknt(t,3,20), using a high value for the optional parameter
maxiter, will succeed.

Algorithm This is the Fortran routine SPLOPT in PGS. It is based on an algorithm
described in , for the construction of that sign function mentioned
above. It is essentially Newton’s method for the solution of the resulting
nonlinear system of equations, with aveknt(tau,k) providing the first
guess for t(k+1), ...,t(n), and some damping used to maintain the
Schoenberg-Whitney conditions .

See Also aptknt, aveknt, newknt

References [1]C. de Boor, "Computational aspects of optimal recovery", in Optimal
Estimation in Approximation Theory, C.A. Micchelli & T.J. Rivlin eds.,
Plenum Publ., New York, 1977, 69-91.

[2]P.W. Gaffney & M.J.D. Powell, "Optimal interpolation", in Numerical
Analysis, G.A. Watson ed., Lecture Notes in Mathematics, No. 506,
Springer-Verlag, 1976, 90-99.

[3]C.A. Micchelli, T.J. Rivlin & S. Winograd, "The optimal recovery of
smooth functions", Numer. Math. 80, (1974), 903-906.
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Purpose Put together spline in ppform

Syntax ppmak(breaks,coefs)
ppmak
ppmak(breaks,coefs,d)
ppmak(breaks,coefs,sizec)

Description The command ppmak(...) puts together a spline in ppform from
minimal information, with the rest inferred from that information.
fnbrk provides any or all of the parts of the completed description. In
this way, the actual data structure used for the storage of the ppform is
easily modified without any effect on the various fn... commands that
use this construct. However, the casual user is not likely to use ppmak
explicitly, relying instead on the various spline construction commands
in the toolbox to construct particular splines.

ppmak(breaks,coefs) returns the ppform of the spline specified by the
break information in breaks and the coefficient information in coefs.
How that information is interpreted depends on whether the function
is univariate or multivariate, as indicated by breaks being a sequence
or a cell array.

If breaks is a sequence, it must be nondecreasing, with its first entry
different from its last. Then the function is assumed to be univariate,
and the various parts of its ppform are determined as follows:

1 The number l of polynomial pieces is computed as
length(breaks)-1, and the basic interval is, correspondingly, the
interval [breaks(1) .. breaks(l+1)].

2 The dimension d of the function’s target is taken to be the number
of rows in coefs. In other words, each column of coefs is taken to
be one coefficient. More explicitly, coefs(:,i*k+j) is assumed to
contain the jth coefficient of the (i+1)st polynomial piece (with the
first coefficient the highest and the kth coefficient the lowest, or
constant, coefficient). Thus, with kl the number of columns of coefs,
the order k of the piecewise-polynomial is computed as fix(kl/l).
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After that, the entries of coefs are reordered, by the command

coefs = reshape(permute(reshape(coefs,[d,k,l]),[1 3 2]),[d*l,k])

in order to conform with the internal interpretation of the coefficient
array in the ppform for a univariate spline.

If breaks is a cell array, of length m, then the function is assumed to
be m-variate (tensor product), and the various parts of its ppform are
determined from the input as follows:

1 The m-vector l has length(breaks{i})-1 as its ith entry and,
correspondingly, the m-cell array of its basic intervals has the interval
[breaks{i}(1) .. breaks{i}(end)] as its ith entry.

2 The dimension d of the function’s target and the m-vector k of
(coordinate-wise polynomial) orders of its pieces are obtained directly
from the size of coefs, as follows.

a If coefs is an m-dimensional array, then the function is taken to
be scalar-valued, i.e., d is 1, and the m-vector k is computed as
size(coefs)./l. After that, coefs is reshaped by the command
coefs = reshape(coefs,[1,size(coefs)]).

b If coefs is an (r+m)-dimensional array, with sizec = size(c)
say, then d is set to sizec(1:r), and the vector k is computed as
sizec(r+(1:m))./l. After that, coefs is reshaped by the command
coefs = reshape(coefs,[prod(d),sizec(r+(1:m))]).

Then, coefs is interpreted as an equivalent array of
size [d,l(1),k(1),l(2),k(2),...,l(m),k(m)], with its
(:,i(1),r(1),i(2),r(2),...,i(m),r(m))th entry the coefficient of

in the local polynomial representation of the function on the
(hyper)rectangle with sides
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This is, in fact, the internal interpretation of the coefficient array in the
ppform of a multivariate spline.

ppmak prompts you for breaks and coefs.

ppmak(breaks,coefs,d) with d a positive integer, also puts together
the ppform of a spline from the information supplied, but expects the
function to be univariate. In that case, coefs is taken to be of size
[d*l,k], with l obtained as length(breaks)-1, and this determines
the order, k, of the spline. With this, coefs(i*d+j,:) is taken to be the
jth components of the coefficient vector for the (i+1)st polynomial piece.

ppmak(breaks,coefs,sizec) with sizec a row vector of positive
integers, also puts together the ppform of a spline from the information
supplied, but interprets coefs to be of size sizec (and returns an error
when prod(size(coefs)) differs from prod(sizec)). This option is
important only in the rare case that the input argument coefs is an
array with one or more trailing singleton dimensions. For, MATLAB
suppresses trailing singleton dimensions, hence, without this explicit
specification of the intended size of coefs, ppmak would interpret coefs
incorrectly.

Examples The two splines

p1 = ppmak([1 3 4],[1 2 5 6;3 4 7 8]);
p2 = ppmak([1 3 4],[1 2;3 4;5 6;7 8],2);

have exactly the same ppform (2-vector-valued, of order 2). But the
second command provides the coefficients in the arrangement used
internally.

ppmak([0:2],[1:6]) constructs a piecewise-polynomial function with
basic interval [0..2] and consisting of two pieces of order 3, with the sole
interior break 1. The resulting function is scalar, i.e., the dimension d
of its target is 1. The function happens to be continuous at that break

since the first piece is , while the second piece is

.
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When the function is univariate and the dimension d is not explicitly
specified, then it is taken to be the row number of coefs. The column
number should be an integer multiple of the number l of pieces specified
by breaks. For example, the statement ppmak([0:2],[1:3;4:6]) leads
to an error, since the break sequence [0:2] indicates two polynomial
pieces, hence an even number of columns are expected in the coefficient
matrix. The modified statement ppmak([0:1],[1:3;4:6]) specifies

the parabolic curve . In particular, the
dimension d of its target is 2. The differently modified statement
ppmak([0:2],[1:4;5:8]) also specifies a planar curve (i.e., d is
2), but this one is piecewise linear; its first polynomial piece is

.

Explicit specification of the dimension d leads, in the univariate
case, to a different interpretation of the entries of coefs. Now the
column number indicates the polynomial order of the pieces, and the
row number should equal d times the number of pieces. Thus, the
statement ppmak([0:2],[1:4;5:8],2) is in error, while the statement
ppmak([0:2],[1:4;5:8],1) specifies a scalar piecewise cubic whose

first piece is .

If you wanted to make up the constant polynomial, with basic interval
[0..1] say, whose value is the matrix eye(2), then you would have to use
the full optional third argument, i.e., use the command

pp = ppmak(0:1,eye(2),[2,2,1,1]);

Finally, if you want to construct a 2-vector-valued bivariate polynomial
on the rectangle [-1 .. 1] x [0 .. 1], linear in the first variable and
constant in the second, say

coefs = zeros(2,2,1); coefs(:,:,1) = [1 0; 0 1];

then the straightforward

pp = ppmak({[-1 1],[0 1]},coefs);
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will fail, producing a scalar-valued function of order 2 in each variable,
as will

pp = ppmak({[-1 1],[0 1]},coefs,size(coefs));

while the following command will succeed:

pp = ppmak({[-1 1],[0 1]},coefs,[2 2 1]);

See the demo "Intro to ppform" for other examples.

See Also fnbrk
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Purpose Put together rational spline

Syntax rp = rpmak(breaks,coefs)
rp = rpmak(breaks,coefs,d)
rpmak(breaks,coefs,sizec)
rs = rsmak(knots,coefs)
rs = rsmak(shape,parameters)

Description Both rpmak and rsmak put together a rational spline from minimal
information. rsmak is also equipped to provide rational splines that
describe standard geometric shapes. A rational spline must be scalar-
or vector-valued.

rp = rpmak(breaks,coefs) has the same effect as the command
ppmak(breaks, coefs), -- except that the resulting ppform is tagged as
a rational spline, i.e., as a rpform.

To describe what this means, let be the piecewise-polynomial
put together by the command ppmak(breaks,coefs), and let

be the rational spline put together by the
command rpmak(breaks,coefs). If v is the value of at ,
then v(1:end-1)/v(end) is the value of at . In other words,

. Correspondingly, the dimension of the target of
is one less than the dimension of the target of . In particular, the
dimension (of the target) of must be at least 2, i.e., the coefficients
specified by coefs must be d-vectors with d > 1. See ppmak for how the
input arrays breaks and coefs are being interpreted, hence how they
are to be specified in order to produce a particular piecewise-polynomial.

rp = rpmak(breaks,coefs,d) has the same effect as
ppmak(breaks,coefs,d+1), except that the resulting ppform is tagged
as being a rpform. Note that the desire to have that optional third
argument specify the dimension of the target requires different values
for it in rpmak and ppmak for the same coefficient array coefs.

rpmak(breaks,coefs,sizec) has the same effect as
ppmak(breaks,coefs,sizec) except that the resulting ppform is
tagged as being a rpform, and the target dimension is taken to be
sizec(1)-1.
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rs = rsmak(knots,coefs) is similarly related to spmak(knots,coefs),
and rsmak(knots,coefs,sizec) to spmak(knots,coefs,sizec). In
particular, rsmak(knots,coefs) puts together a rational spline in
B-form, i.e., it provides a rBform. See spmak for how the input arrays
knots and coefs are being interpreted, hence how they are to be
specified in order to produce a particular piecewise-polynomial.

rs = rsmak(shape,parameters) provides a rational spline in rBform
that describes the shape being specified by the string shape and the
optional additional parameters. Specific choices are:

rsmak('arc',radius,center,[alpha,beta])
rsmak('circle',radius,center)
rsmak('cone',radius,halfheight)
rsmak('cylinder',radius,height)
rsmak('southcap',radius,center)
rsmak('torus',radius,ratio)

with 1 the default value for radius, halfheight and height, and
the origin the default for center, and the arc running through all
the angles from alpha to beta (default is [-pi/2,pi/2]), and the
cone, cylinder, and torus centered at the origin with their major circle
in the (x,y)-plane, and the minor circle of the torus having radius
radius*ratio, the default for ratio being 1/3.

From these, one may generate related shapes by affine transformations,
with the help of fncmb(rs,transformation).

All fn... commands except fnint, fnder, fndir can handle rational
splines.

Examples The commands

runges = rsmak([-5 -5 -5 5 5 5],[1 1 1; 26 -24 26]);
rungep = rpmak([-5 5],[0 0 1; 1 -10 26],1);

both provide a description of the rational polynomial
on the interval [-5 .. 5]. However, outside the interval [-5 .. 5], the
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function given by runges is zero, while the rational spline given by

rungep agrees with for every .

The figure of a rotated cone is generated by the commands

fnplt(fncmb(rsmak('cone',1,2),[0 0 -1;0 1 0;1 0 0]))
axis equal, axis off, shading interp

A Rotated Cone Given by a Rational Quadratic Spline

A Helix on page 11-83, showing a helix with several windings, is
generated by the commands

arc = rsmak('arc',2,[1;-1],[0 7.3*pi]);
[knots,c] = fnbrk(arc,'k','c');
helix = rsmak(knots, [c(1:2,:);aveknt(knots,3).*c(3,:);
c(3,:)]);
fnplt(helix)
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A Helix

For further illustrated examples, see Chapter 7, “NURBS and Other
Rational Splines”

See Also fnbrk, ppmak, spmak
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Purpose Piecewise biarc Hermite interpolation

Syntax c = rscvn(p,u)
c = rscvn(p)

Description c = rscvn(p,u) returns a planar piecewise biarc curve (in quadratic
rBform) that passes, in order, through the given points p(:,j) and
is constructed in the following way (see Construction of a Biarc on
page 11-86). Between any two distinct points p(:,j) and p(:,j+1),
the curve usually consists of two circular arcs (including straight-line
segments) which join with tangent continuity, with the first arc starting
at p(:,j) and normal there to u(:,j), and the second arc ending at
p(:,j+1) and normal there to u(:,j+1), and with the two arcs written
as one whenever that is possible. Thus the curve is tangent-continuous
everywhere except, perhaps, at repeated points, where the curve may
have a corner, or when the angle, formed by the two segments ending
at p(:,j), is unusually small, in which case the curve may have a
cusp at that point.

p must be a real matrix, with two rows, and at least two columns,
and any column must be different from at least one of its neighboring
columns.

umust be a real matrix with two rows, with the same number of columns
as p (for two exceptions, see below), and can have no zero column.

c = rscvn(p) chooses the normals in the following way. For j=2:end-1,
u(:,j) is the average of the (normalized, right-turning) normals to the
vectors p(:,j)-p(:,j-1) and p(:,j+1)-p(:,j). If p(:,1)==p(:,end),
then both end normals are chosen as the average of the normals to
p(:,2)-p(:,1)and p(:,end)-p(:,end-1), thus preventing a corner in
the resulting closed curve. Otherwise, the end normals are so chosen
that there is only one arc over the first and last segment (not-a-knot
end condition).

rscvn(p,u), with u having exactly two columns, also chooses the
interior normals as for the case when u is absent but uses the two
columns of u as the end-point normals.
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Examples Example 1. The following code generates a description of a circle, using
just four pieces. Except for a different scaling of the knot sequence, it is
the same description as is supplied by rsmak('circle',1,[1;1]).

p = [1 0 -1 0 1; 0 1 0 -1 0]; c = rscvn([p(1,:)+1;p(2,:)+1],p);

The same circle, but using just two pieces, is provided by

c2 = rscvn([0,2,0; 1,1,1]);

Example 2. The following code plots two letters. Note that the second
letter is the result of interpolation to just four points. Note also the use
of translation in the plotting of the second letter.

p = [-1 .8 -1 1 -1 -1 -1; 3 1.75 .5 -1.25 -3 -3 3];
i = eye(2); u = i(:,[2 1 2 1 2 1 1]); B = rscvn(p,u);
S = rscvn([1 -1 1 -1; 2.5 2.5 -2.5 -2.5]);
fnplt(B), hold on, fnplt(fncmb(S,[3;0])), hold off
axis equal, axis off

Two Letters Composed of Circular Arcs

Example 3. The following code generates the Construction of a Biarc
on page 11-86, of use in the discussion below of the biarc construction
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used here. Note the use of fntlr to find the tangent to the biarc at the
beginning, at the point where the two arcs join, and at the end.

p = [0 1;0 0]; u = [.5 -.1;-.25 .5];
plot(p(1,:),p(2,:),'k'), hold on
biarc = rscvn(p,u); breaks = fnbrk(biarc,'b');
fnplt(biarc,breaks(1:2),'b',3), fnplt(biarc,breaks(2:3),'r',3)
vd = fntlr(biarc,2,breaks);
quiver(vd(1,:),vd(2,:),vd(4,:),-vd(3,:)), hold off

p1 p2

q

u1

v

u2

Construction of a Biarc

Algorithm Given two distinct points, p1 and p2, in the plane and, correspondingly,
two nonzero vectors, u1 and u2, there is a one-parameter family of
biarcs (i.e., a curve consisting of two arcs with common tangent at their
join) starting at p1 and normal there to u1 and ending at p2 and normal
there to u2. One way to parametrize this family of biarcs is by the
normal direction, v, at the point q at which the two arcs join. With a
nonzero v chosen, there is then exactly one choice of q, hence the entire
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biarc is then determined. In the construction used in rscvn, v is chosen
as the reflection, across the perpendicular to the segment from p1 to
p2, of the average of the vectors u1 and u2, -- after both vectors have
been so normalized that their length is 1 and that they both point to
the right of the segment from p1 to p2. This choice for v seems natural
in the two standard cases: (i) u2 is the reflection of u1 across the
perpendicular to the segment from p1 to p2; (ii) u1 and u2 are parallel.
This choice of v is validated by Biarcs as a Function of the Left Normal
on page 11-87 which shows the resulting biarcs when p1, p2, and u2 =
[.809;.588]are kept fixed and only the normal at p1 is allowed to vary.

Biarcs as a Function of the Left Normal

But it is impossible to have the interpolating biarc depend continuously
at all four data, p1, p2, u1, u2. There has to be a discontinuity as the
normal directions, u1 and u2, pass through the direction from p1 to p2.
This is illustrated in Biarcs as a Function of One Endpoint on page
11-88 which shows the biarcs when one point, p1 = [0;0], and the two
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normals, u1 = [1;1] and u2 = [1;-1], are held fixed and only the
other point, p2, moves, on a circle around p1.

Biarcs as a Function of One Endpoint

See Also rsmak, cscvn
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Purpose Solve almost block-diagonal linear system

Syntax x = slvblk(blokmat,b)
x = slvblk(blockmat,b,w)

Description x = slvblk(blokmat,b) returns the solution (if any) of the linear
system Ax = b, with the matrix A stored in blokmat in the spline almost
block-diagonal form. At present, only the command spcol provides such
a description, of the matrix whose typical entry is the value of some
derivative (including the 0th derivative, i.e., the value) of a B-spline
at some site. If the linear system is overdetermined (i.e., has more
equations than unknowns but is of full rank), then the least-squares
solution is returned.

The right side bmay contain several columns, and is expected to contain
as many rows as there are rows in the matrix described by blokmat.

x = slvblk(blockmat,b,w) returns the vector x that minimizes the

weighted sum .

Examples sp=spmak(knots,slvblk(spcol(knots,k,x,1),y.')) provides in sp
the B-form of the spline s of order k with knot sequence knots that
matches the given data (x,y), i.e., for which s(x) equals y.

Algorithm The command bkbrk is used to obtain the essential parts of the
coefficient matrix described by blokmat (in one of two available forms).

A QR factorization is made of each diagonal block, after it was
augmented by the equations not dealt with when factoring the preceding
block. The resulting factorization is then used to solve the linear system
by backsubstitution.

See Also bkbrk, spap2, spapi, spcol
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Purpose Locate sites with respect to mesh sites

Syntax pointer = sorted(meshsites,sites)

Description Various commands in this toolbox need to determine the index
for which a given lies in the interval , with a given
nondecreasing sequence, e.g., a knot sequence. This job is done by
sorted in the following fashion.

pointer = sorted(meshsites,sites) is the integer row vector
whose j-th entry equals the number of entries in meshsites that
are ≤ ssites(j), with ssites the vector sort(sites). Thus, if both
meshsites and sites are nondecreasing, then

meshsites(pointer(j)) ≤ sites(j) < meshsites(pointer(j)+1)

with the obvious interpretations when

pointer(j) < 1 or length(meshsites) < pointer(j) + 1

Specifically, having pointer(j) < 1 then corresponds to having
sites(j) strictly to the left of meshsites(1), while having
length(meshsites) < pointer(j)+1 then corresponds to having
sites(j) at, or to the right of, meshsites(end).

Examples The statement

sorted([1 1 1 2 2 3 3 3],[0:4])

will generate the output 0 3 5 8 8, as will the statement

sorted([3 2 1 1 3 2 3 1],[2 3 0 4 1])

Algorithm The indexing output from sort([meshsites(:).',sites(:).']) is
used.
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Purpose Least-squares spline approximation

Syntax spap2(knots,k,x,y)
spap2(l,k,x,y)
sp = spap2(...,x,y,w)
spap2({knorl1,...,knorlm},k,{x1,...,xm},y)
spap2({knorl1,...,knorlm},k,{x1,...,xm},y,w)

Description spap2(knots,k,x,y) returns the B-form of the spline of order k with
the given knot sequence knots for which

(*) y(:,j) = f(x(j)), all j

in the weighted mean-square sense, meaning that the sum

is minimized, with default weights equal to 1. The
data values y(:,j) may be scalars, vectors, matrices, even ND-arrays,

and stands for the sum of the squares of all the entries of . Data
points with the same site are replaced by their average.

If the sites x satisfy the (Schoenberg-Whitney) conditions

(**)

then there is a unique spline (of the given order and knot sequence)
satisfying (*) exactly. No spline is returned unless (**) is satisfied for
some subsequence of x.

spap2(l,k,x,y) , with l a positive integer, returns the B-form of a
least-squares spline approximant, but with the knot sequence chosen
for you. The knot sequence is obtained by applying aptknt to an
appropriate subsequence of x. The resulting piecewise-polynomial
consists of l polynomial pieces and has k-2 continuous derivatives.
If you feel that a different distribution of the interior knots might do
a better job, follow this up with
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sp1 = spap2(newknt(sp),k,x,y));

sp = spap2(...,x,y,w) lets you specify the weights w in the error
measure (given above). w must be a vector of the same size as x, with
nonnegative entries. All the weights corresponding to data points with
the same site are summed when those data points are replaced by their
average.

spap2({knorl1,...,knorlm},k,{x1,...,xm},y) provides a
least-squares spline approximation to gridded data. Here, each
knorli is either a knot sequence or a positive integer. Further,
k must be an m-vector, and y must be an (r+m)-dimensional
array, with y(:,i1,...,im) the datum to be fitted at the site
[x{1}(i1),...,x{m}(im)], all i1, ..., im. However, if the spline is to be
scalar-valued, then, in contrast to the univariate case, y is permitted to
be an m-dimensional array, in which case y(i1,...,im) is the datum to
be fitted at the site [x{1}(i1),...,x{m}(im)], all i1, ..., im.

spap2({knorl1,...,knorlm},k,{x1,...,xm},y,w) also lets you
specify the weights. In this m-variate case, w must be a cell array with
m entries, with w{i} a nonnegative vector of the same size as xi, or
else w{i} must be empty, in which case the default weights are used
in the ith variable.

Examples sp = spap2(augknt([a,xi,b],4),4,x,y)

is the least-squares approximant to the data x, y, by cubic splines with
two continuous derivatives, basic interval [a..b], and interior breaks
xi, provided xi has all its entries in (a..b) and the conditions (**)
are satisfied in some fashion. In that case, the approximant consists
of length(xi)+1 polynomial pieces. If you do not want to worry about
the conditions (**) but merely want to get a cubic spline approximant
consisting of l polynomial pieces, use instead

sp = spap2(l,4,x,y);

If the resulting approximation is not satisfactory, try using a larger
l. Else use
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sp = spap2(newknt(sp),4,x,y);

for a possibly better distribution of the knot sequence. In fact, if that
helps, repeating it may help even more.

As another example, spap2(1, 2, x, y); provides the least-squares
straight-line fit to data x,y, while

w = ones(size(x)); w([1 end]) = 100; spap2(1,2, x,y,w);

forces that fit to come very close to the first data point and to the last.

Algorithm spcol is called on to provide the almost block-diagonal collocation
matrix , and slvblk solves the linear system (*) in the
(weighted) least-squares sense, using a block QR factorization.

Gridded data are fitted, in tensor-product fashion, one variable at
a time, taking advantage of the fact that a univariate weighted
least-squares fit depends linearly on the values being fitted.

See Also slvblk, spapi, spcol
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Purpose Spline interpolation

Syntax spline = spapi(knots,x,y)
spapi(k,x,y)
spapi({knork1,...,knorkm},{x1,...,xm},y)
spapi(...,'noderiv')

Description spline = spapi(knots,x,y) returns the spline (if any) of order

k = length(knots) - length(x)

with knot sequence knots for which

(*) f(x(j)) = y(:,j), all j.

If some of the entries of x are the same, then this is taken in the

osculatory sense, i.e., in the sense that , with m(j)

:= #{ i<j : x(i) = x(j) }, and the -th derivative of . Thus -fold
repetition of a site in x corresponds to the prescribing of value and the
first derivatives of at . If you don’t want this, call spapi with
an additional (fourth) argument, in which case, at each data site, the
average of all data values with the same data site is matched.

The data values, y(:,j), may be scalars, vectors, matrices, or even
ND-arrays.

spapi(k,x,y) , with k a positive integer, merely specifies the desired
spline order, k, in which case aptknt is used to determine a workable
(though not necessarily optimal) knot sequence for the given sites x. In
other words, the command spapi(k,x,y) has the same effect as the
more explicit command spapi(aptknt(x,k),x,y).

spapi({knork1,...,knorkm},{x1,...,xm},y) returns the B-form of
a tensor-product spline interpolant to gridded data. Here, each knorki
is either a knot sequence, or else is a positive integer specifying the
polynomial order to be used in the ith variable, thus leaving it to spapi
to provide a corresponding knot sequence for the ith variable. Further,
y must be an (r+m)-dimensional array, with y(:,i1,...,im) the datum
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to be fitted at the site [x{1}(i1),...,x{m}(im)], all i1, ..., im ,
unless the spline is to be scalar-valued, in which case, in contrast to the
univariate case, y is permitted to be an m-dimensional array.

spapi(...,'noderiv') with the string 'noderiv' as a fourth
argument, has the same effect as spapi(...) except that data values
sharing the same site are interpreted differently. With the fourth
argument present, the average of the data values with the same data
site is interpolated at such a site. Without it, data values with the
same data site are interpreted as values of successive derivatives to
be matched at such a site, as described above, in the first paragraph
of this Description.

Examples spapi([0 0 0 0 1 2 2 2 2],[0 1 1 1 2],[2 0 1 2 -1])produces
the unique cubic spline f on the interval [0..2] with exactly one interior
knot, at 1, that satisfies the five conditions

, , , ,

These include 3-fold matching at 1, i.e., matching there to prescribed
values of the function and its first two derivatives.

Here is an example of osculatory interpolation, to values y and slopes s
at the sites x by a quintic spline:

sp = spapi(augknt(x,6,2),[x,x,min(x),max(x)],[y,s,ddy0,ddy1]);

with ddy0 and ddy1 values for the second derivative at the endpoints.

As a related example, if the function sin(x) is to be interpolated at the
distinct data sites x by a cubic spline, and its slope is also to be matched
at a subsequence x(s), then this can be accomplished by the command

sp = spapi(4,[x x(s)], [sin(x) cos(x(s))]);

in which a suitable knot sequence is supplied with the aid of aptknt.
In fact, if you wanted to interpolate the same data by quintic splines,
simply change the 4 to 6.
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As a bivariate example, here is a bivariate interpolant.

x = -2:.5.2; y = -1:.25:1; [xx, yy] = ndgrid(x,y);
z = exp(-(xx.^2+yy.^2));
sp = spapi({3,4},{x,y},z); fnplt(sp)

As an illustration of osculatory interpolation to gridded data, here is
complete bicubic interpolation, with the data explicitly derived from the

bicubic polynomial , to make it easy for you to see exactly
where the slopes and slopes of slopes (i.e., cross derivatives) must be
placed in the data values supplied. Since our is a bicubic polynomial,
its interpolant, , must be itself. We test this.

sites = {[0,1],[0,2]}; coefs = zeros(4,4); coefs(1,1) = 1;
g = ppmak(sites,coefs);
Dxg = fnval(fnder(g,[1,0]),sites);
Dyg = fnval(fnder(g,[0,1]),sites);
Dxyg = fnval(fnder(g,[1,1]),sites);
f = spapi({4,4}, {sites{1}([1,2,1,2]),sites{2}([1,2,1,2])}, ...

[fnval(g,sites), Dyg ; ...
Dxg.' , Dxyg]);

if any( squeeze( fnbrk(fn2fm(f,'pp'), 'c') ) - coefs )
'something went wrong', end

Algorithm spcol is called on to provide the almost-block-diagonal collocation
matrix (with repeats in x denoting derivatives, as described
above), and slvblk solves the linear system (*), using a block QR
factorization.

Gridded data are fitted, in tensor-product fashion, one variable at a
time, taking advantage of the fact that a univariate spline fit depends
linearly on the values being fitted.

See Also csapi, spap2, spaps, spline

Limitations The given (univariate) knots and sites must satisfy the
Schoenberg-Whitney conditions for the interpolant to be defined.
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Assuming the site sequence x to be nondecreasing, this means that we
must have

, all

(with equality possible at knots(1) and knots(end)). In the multivariate
case, these conditions must hold in each variable separately.
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Purpose Smoothing spline

Syntax sp = spaps(x,y,tol)
[sp,values] = spaps(x,y,tol)
[sp,values,rho] = spaps(x,y,tol)
[...] = spaps(x,y,tol,arg1,arg2,...)
[...] = spaps({x1,...,xr},y,tol,...)

Description sp = spaps(x,y,tol) returns the B-form of the smoothest function
that lies within the given tolerance tol of the given data points (x(j),
y(:,j)), j=1:length(x). The data values y(:,j) may be scalars,
vectors, matrices, even ND-arrays. Data points with the same data site
are replaced by their weighted average, with its weight the sum of the
corresponding weights, and the tolerance tol is reduced accordingly.

[sp,values] = spaps(x,y,tol) also returns the smoothed values,
i.e., values is the same as fnval(sp,x).

Here, the distance of the function from the given data is measured by

with the default choice for the weights w making the composite

trapezoidal rule approximation to , and denoting the
sum of squares of the entries of .

Further, smoothest means that the following roughness measure is
minimized:

where denotes the mth derivative of . The default value for m is 2,
the default value for the roughness measure weight is the constant
1, and this makes a cubic smoothing spline.
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When tol is nonnegative, then the spline is determined as the unique

minimizer of the expression , with the smoothing
parameter (optionally returned) so chosen that equals tol.
Hence, when m is 2, then, after conversion to ppform, the result should
be the same (up to roundoff) as obtained by . Further,
when tol is zero, then the ‘‘natural" or variational spline interpolant
of order is returned. For large enough tol, the least-squares
approximation to the data by polynomials of degree <m is returned.

When tol is negative, then ρ is taken to be -tol.

The default value for the weight function in the roughness measure is
the constant function 1. But you may choose it to be, more generally,
a piecewise constant function, with breaks only at the data sites.
Assuming the vector x to be strictly increasing, you specify such a
piecewise constant by inputting tol as a vector of the same size as x.
In that case, tol(i) is taken as the constant value of on the interval
(x(i-1) .. x(i)), i=2:length(x), while tol(1) continues to be used
as the specified tolerance.

[sp,values,rho] = spaps(x,y,tol) also returns the actual value of
used as the third output argument.

[...] = spaps(x,y,tol,arg1,arg2,...) lets you specify the
weight vector w and/or the integer m, by supplying them as an argi. For
this, w must be a nonnegative vector of the same size as x; m must be
1 (for a piecewise linear smoothing spline), or 2 (for the default cubic
smoothing spline), or 3 (for a quintic smoothing spline).

If the resulting smoothing spline, sp, is to be evaluated outside its basic
interval, it should be replaced by fnxtr(sp,m) to ensure that its m-th
derivative is zero outside that interval.

[...] = spaps({x1,...,xr},y,tol,...) returns the
B-form of an r-variate tensor-product smoothing spline that
is roughly within the specified tolerance to the given gridded
data. (For scattered data, use tpaps.) Now y is expected to
supply the corresponding gridded values, with size(y) equal to
[length(x1),...,length(xr)] in case the function is scalar-valued,
and equal to [d,length(x1),...,length(xr)] in case the function
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is d-valued. Further, tol must be a cell array with r entries, with
tol{i} the tolerance used during the i-th step when a univariate
(but vector-valued) smoothing spline in the i-th variable is being
constructed. The optional input for m must be an r-vector (with entries
from the set {1,2,3}), and the optional input for w must be a cell array
of length r, with w{i} either empty (to indicate that the default choice
is wanted) or else a positive vector of the same length as xi.

Examples The statements

w = ones(size(x)); w([1 end]) = 100;
sp = spaps(x,y, 1.e-2, w, 3);

give a quintic smoothing spline approximation to the given data that
close to interpolates the first and last datum, while being within about
1.e-2 of the rest.

x = -2:.2:2; y=-1:.25:1; [xx,yy] = ndgrid(x,y); rand('seed',39);
z = exp(-(xx.^2+yy.^2)) + (rand(size(xx))-.5)/30;
sp = spaps({x,y},z,8/(60^2)); fnplt(sp), axis off

produces the figure below, showing a smooth approximant to noisy data
from a smooth bivariate function. Note the use of ndgrid here; use of
meshgrid would have led to an error.
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Algorithm Reinsch’s approach is used (including his clever way of choosing the
equation for the optimal smoothing parameter in such a way that a
good initial guess is available and Newton’s method is guaranteed to
converge and to converge fast).

See Also csaps, spap2, spapi, tpaps

References [1] C. Reinsch, “Smoothing by spline functions”, Numer. Math. 10
(1967), 177–183.
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Purpose B-spline collocation matrix

Syntax colmat = spcol(knots,k,tau)
colmat = spcol(knots,k,tau,arg1,arg2,...)

Description colmat = spcol(knots,k,tau) returns the matrix, with length(tau)
rows and length(knots)-k columns, whose th entry is

This is the value at of the th derivative of the th B-spline
of order k for the knot sequence knots. Here, tau is a sequence of
sites, assumed to be nondecreasing, and , i.e., is

, all .

colmat = spcol(knots,k,tau,arg1,arg2,...) also returns that
matrix, but gives you the opportunity to specify some aspects.

If one of the argi is a string with the same first two letters as in
'slvblk', the matrix is returned in the almost block-diagonal format
(specialized for splines) required by slvblk (and understood by bkbrk).

If one of the argi is a string with the same first two letters as in
'sparse', then the matrix is returned in the sparse format of MATLAB.

If one of the argi is a string with the same first two letters as in
'noderiv', multiplicities are ignored, i.e., is taken to be 1 for all .

Examples To solve approximately the non-standard second-order ODE

on the interval , using cubic splines with 10 polynomial pieces, you
can use spcol in the following way:

tau = linspace(0,pi,101); k = 4;
knots = augknt(linspace(0,pi,11),k);
colmat = spcol(knots,k,brk2knt(tau,3));
coefs = (colmat(3:3:end,:)/5-colmat(1:3:end,:))\(-sin(2*tau).');
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sp = spmak(knots,coefs.');

You can check how well this spline satisfies the ODE by computing and

plotting the residual, , on a fine mesh:

t = linspace(0,pi,501);
yt = fnval(sp,t);
D2yt = fnval(fnder(sp,2),t);
plot(t,D2yt - 5*(yt-sin(2*t)))
title(['residual error; to be compared to max(abs(D^2y)) = ',...

num2str(max(abs(D2yt)))])

The statement spcol([1:6],3,.1+[2:4]) provides the matrix

ans =

0.5900 0.0050 0
0.4050 0.5900 0.0050

0 0.4050 0.5900

in which the typical row records the values at 2.1, or 3.1, or 4.1, of all
B-splines of order 3 for the knot sequence 1:6. There are three such
B-splines. The first one has knots 1,2,3,4, and its values are recorded
in the first column. In particular, the last entry in the first column is
zero since it gives the value of that B-spline at 4.1, a site to the right
of its last knot.

If you add the string 'sl' as an additional input to spcol, then you can
ask bkbrk to extract detailed information about the block structure
of the matrix encoded in the resulting output from spcol. Thus, the
statement bkbrk(spcol(1:6,3,.1+2:4,'sl')) gives:

block 1 has 2 row(s)
0.5900 0.0050 0
0.4050 0.5900 0.0050

next block is shifted over 1 column(s)
block 2 has 1 row(s)

0.4050 0.5900 0.0050
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next block is shifted over 2 column(s)

Algorithm This is the most complex command in this toolbox since it has to deal
with various ordering and blocking issues. The recurrence relations are
used to generate, simultaneously, the values of all B-splines of order k
having anyone of the tau(i) in their support.

A separate calculation is carried out for the (presumably few) sites at
which derivative values are required. These are the sites tau(i) with

. For these, and for every order , with
equal to , values of all B-splines of that order are generated

by recurrence and used to compute the th derivative at those sites
of all B-splines of order k.

The resulting rows of B-spline values (each row corresponding to a
particular tau(i)) are then assembled into the overall (usually rather
sparse) matrix.

When the optional argument 'sl' is present, these rows are instead
assembled into a convenient almost block-diagonal form that takes
advantage of the fact that, at any site tau(i), at most k B-splines of
order k are nonzero. This fact (together with the natural ordering of the
B-splines) implies that the collocation matrix is almost block-diagonal,
i.e., has a staircase shape, with the individual blocks or steps of varying
height but of uniform width k.

The command slvblk is designed to take advantage of this
storage-saving form available when used, in spap2, spapi, or spaps,
to help determine the B-form of a piecewise-polynomial function from
interpolation or other approximation conditions.

See Also slvblk, spap2, spapi

Limitations The sequence tau is assumed to be nondecreasing.
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Purpose Spline curve by uniform subdivision

Syntax spcrv(c,k)
spcrv(c)
spcrv(c,k,maxpnt)

Description spcrv(c,k) provides a dense sequence of points on the uniform
B-spline curve of order k with B-spline coefficients c. Explicitly, this
is the curve

with the B-spline with knots , and n the number of
coefficients in c, i.e., [d,n] equals size(c).

spcrv(c) chooses the order k to be 4.

spcrv(c,k,maxpnt) makes sure that at least maxpnt points are
generated. The default value for the maximum number of sites tt to
be generated is 100.

The parameter interval that the site sequence tt fills out uniformly is
the interval [k/2 .. (n-k/2)].

The output consists of the array .

Examples The following would show a questionable broken line and its smoothed
version:

points = [0 0 1 1 0 -1 -1 0 0 ;
0 0 0 1 2 1 0 -1 -2];

plot(points(1,:),points(2,:),':')
values = spcrv(points,3);
hold on, plot(values(1,:),values(2,:)), hold off

Algorithm Repeated midpoint knot insertion is used until there are at least maxpnt
sites. There are situations where use of fnplt would be more efficient.
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See Also fnplt
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Purpose Experiment with some spline approximation methods

Syntax splinetool
splinetool(x,y)

Description splinetool is a graphical user interface (GUI), whose initial menu
provides you with various choices for data including the option of
importing some data from the workspace.

splinetool(x,y) brings up the GUI with the specified data x and y,
which are vectors of the same length.

Remarks The Spline Tool is shown in the following figure comparing cubic spline
interpolation with a smoothing spline on sample data created by adding
noise to the cosine function.
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Approximation Methods

The approximation methods and options supported by the GUI are
shown below.

Approximation
Method Option

Cubic Interpolating
Spline

Adjust the type and values of the end
conditions.

Smoothing Spline Choose between cubic (order 4) and quintic
(order 6) splines. Adjust the value of the
tolerance and/or smoothing parameter.
Adjust the weights in the error and
roughness measures.

Least-Squares
Approximation

Vary the order from 1 to 14. The default
order is 4, which gives cubic approximating
splines. Modify the number of polynomial
pieces. Add and move knots to improve the
fit. Adjust the weights in the error measure.

Spline Interpolation Vary the order from 2 to 14. The default
order is 4, which gives cubic spline
interpolants. If the default knots supplied
are not satisfactory, you can move them
around to vary the fit.

Graphs

You can generate and compare several approximations to the same
data. One of the approximations is always marked as "current" using a
thicker line width. The following displays are available:

• Data graph. It shows:

- The data

- The approximations chosen for display in List of approximations

- The current knot sequence or the current break sequence
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• Auxiliary graph (if viewed) for the current approximation. You can
invoke this graph by selecting any one of the items in the View
menu. It shows one of the following:

- The first derivative

- The second derivative

- The error

By default, the error is the difference between the given data values
and the value of the approximation at the data sites. In particular, the
error is zero (up to round-off) when the approximation is an interpolant.
However, if you provide the data values by specifying a function, then
the error displayed is the difference between that function and the
current approximation. This also happens if you change the y-label of
the data graph to the name of a function.

Menu Options

You can annotate and print the graphs with the File > Print to
Figure menu.

You can export the data and approximations to the workspace for
further use or analysis with the File > Export Data and File > Export
Spline menus, respectively.

You can create, with the File > Generate M-file menu, a function
M-file that you can use to generate, from the original data, any or all
graphs currently shown. This M-file also provides you with a written
record of the Spline Toolbox commands used to generate the current
graph(s).

You can save, with the Replicate button, the current approximation
before you experiment further. If, at a later time, you click on the
approximation so saved, splinetool restores everything to the way
it was, including the data used in the construction of the saved
approximation. This is true even if, since saving this approximation,
you have edited the data while working on other approximations.
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You can add, delete, or move data, knots, and breaks by right-clicking
in the graph, or selecting the appropriate item in the Edit menu.

You can toggle the grid or the legend in the graph(s) with the Tools
menu.

Examples • “Exploring End Conditions For Cubic Spline Interpolation” on page
11-111

• “Estimating the Second Derivative at an Endpoint” on page 11-114

• “Least-Squares Approximation” on page 11-116

• “Smoothing Spline” on page 11-119

Exploring End Conditions For Cubic Spline Interpolation

The purpose of this example is to explore the various end conditions
available with cubic spline interpolation:

1 Type splinetool at the command line.

2 Select Import your own data from the initial screen, and accept
the default function. You should see the following display.
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The default approximation shown is the cubic spline interpolant with
the not-a-knot end condition.

The vector x of data sites is linspace(0,2*pi,31) and the values
are cos(x). This differs from simply providing the vector y of values
in that the cosine function is explicitly recorded as the underlying
function. Therefore, the error shown in the graph is the error in
the spline as an approximation to the cosine rather than as an
approximation to the given values. Notice the resulting relatively
large error, about 5e-5, near the endpoints.

3 For comparison, follow these steps:

• Click on New in the List of approximations.

• In Approximation method, select complete from the list of
End conditions.
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• Since the first derivative of the cosine function is sine, adjust the
first-derivative values to their known values of zero at both the
left end and the right end.

This procedure results in the display shown below (after the mouse is
used to move the Legend further down). Note that the right end slope
is zero only up to round-off. Bottomline tells you that the toolbox
function csape was used to create the spline.

Be impressed by the improvement in the error, which is only about
5e-6.
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4 For further comparison, follow these steps:

• Click on New in the List of approximations.

• In Approximation method, select ’natural’ from the list of
End conditions.

Note the deterioration of the approximation near the ends, an error
of about 2e-3, which is much worse than with the not-a-knot end
conditions.

5 For a final comparison, follow these steps:

• Click on New in the List of approximations.

• Since we know that the cosine function is periodic, in
Approximation method, select periodic from the list of End
conditions.

Note the dramatic improvement in the approximation, back to an
error of about 5e-6, particularly compared to the ’natural’ end
conditions.

Estimating the Second Derivative at an Endpoint

This example uses cubic spline interpolation and least-squares
approximation to determine an estimate of the initial acceleration for
a drag car:

1 Type splinetool at the command line or if the GUI is already
running, click on File > Restart.

2 Choose Richard Tapia’s drag racing data. These data show the
distance traveled by a drag car as a function of time. The message
window asks you to estimate the initial acceleration by setting the
initial speed to zero. Click on OK, or use Space or Enter, to remove
the message window.

3 In Approximation method, select complete from the list of End
conditions.
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4 Adjust the initial speed by changing the first derivative at the left
endpoint to zero.

5 Look for the value of the initial acceleration, which is given by
the value of the second derivative at the left endpoint. You can
toggle between the first derivative and the second derivative at this
endpoint by clicking on the left end button. The value of the second
derivative should be around 187 in the units chosen. Choose View >
Show 2nd Derivative to see this graphically.

6 For comparison, click on New, then choose Least-Squares
Approximation as the Approximation method. With this
method, you can no longer specify end conditions. Instead, you may
vary the order of the method. Verify that the initial acceleration is
close to the cubic interpolation value.

The results of this procedure are shown below.
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Least-Squares Approximation

This example encourages you to place five interior knots in such a way
that the least-squares approximation to these data by cubic splines has
an absolute error no bigger than .04 everywhere:

1 Type splinetool at the command line or if the GUI is already
running, click on File > Restart.

2 Choose Titanium heat data.
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3 Select Least-Squares Approximation as the Approximation
method.

4 Notice how poorly this approximates the data since there are no
interior knots. To view the current knots and add new knots, choose
knots from Data, breaks/knots, weights. The knots are now listed
in knots, and also displayed in the data graph as vertical lines.
Notice that there are just the two end knots, each with multiplicity 4.

5 Right-click in the data graph and choose Add Knot. This brings up
crosshairs for you to move with the mouse. Its precise horizontal
location is shown in the edit field below the list of knots. A mouse
click places a new knot at the current location of the crosshairs.
One possible strategy is to place the additional knot at the place
of maximum absolute error, as shown in the auxiliary graph below
the data graph.
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If you right-click and choose Replicate Knot, you will increase
the multiplicity of the current knot, which is shown by its repeated
occurrence in Knots. If you don’t like a particular knot, you can
delete it. To delete a specific knot, you must first select it in either
the list of knots or the data graph, and then right-click in the graph
and choose Delete Knot.

6 You could also ask for an approximation using six polynomial pieces,
which corresponds to five interior knots. To do this, enter 6 as #
pieces in Data, breaks/knots, weights.

7 After you have the five interior knots, try to make the error even
smaller by moving the knots. To do this, select the knot you want
to move by clicking on its vertical line in the graph, then use the
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interface control below Knots in Data, breaks/knots, weights and
observe how the error changes with the movement of the knot. You
can also use the edit field to overwrite the current knot location. You
could also try adjust, which redistributes the current knot sequence.

8 Use Replicate in List of approximations to save any good knot
distribution for later use. Rename the replicated approximation to
lstsqr using Rename. To return to the original approximation,
click on its name in List of approximations.

Smoothing Spline

This example experiments with smoothing splines:

1 Type splinetool at the command line or, if the GUI is already
running, click on File > Restart.

2 Choose Titanium heat data.

3 In Approximation method, choose Smoothing Spline.

4 Vary Parameter between 0 and 1, which changes the approximation
from the least-squares straight-line approximation to the “natural”
cubic spline interpolant.

5 Vary Tolerance between 0 and some large value, even inf. The
approximation changes from the best possible one, the “natural” cubic
spline interpolant, to the least-squares straight-line approximation.

6 As you increase the Parameter value or decrease the Tolerance
value, the error decreases. However, a smaller error corresponds to
more roughness, as measured by the size of the second derivative.
To see this, choose View > Show 2nd Derivative and vary the
Parameter and Tolerance values once again.

7 This step modifies the weights in the error measure to force the
approximation to pass through a particular data point.
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• Set Tolerance to 0.2. Notice that the approximation does not
pass through the highest data point. To see the large error at this
site, choose View > Error.

• To force the smoothing spline to go through this point, choose
Error Weights from Data, breaks/knots, weights.

• Click on the highest data point in the graph and notice its site,
which is indicated in Sites and Values.

• Use the edit field beneath the list of weights to change the current
weight to 1000. Notice how much closer the smoothing spline now
comes to that highest data point, and the decrease in the error at
that site. Turn on the grid, by Tools > Grid, to locate the error
at that site more readily.

8 This step modifies the weights in the roughness measure to permit
a more accurate but less smooth approximation in the peak area
while insisting on a smoother, hence less accurate, approximation
away from the peak area.

• Choose Jumps in Roughness Weight from Data, breaks/knots,
weights.

• Choose View > Show 2nd Derivative

• Select any data point to the left of the peak in the data.

• Set the jump at the selected site to -1 by changing its value in
the edit field below it. Since the roughness weight for the very
first site interval is 1, you have just set the roughness weight to
the right of the highlighted site to 0. Correspondingly, the second
derivative has become relatively small to the left of that site.

• Select any data point to the right of the peak in the data.

• Set the jump across the selected site to 1. Since the roughness
weight just to the left of the highlighted site is 0, you have just
set the roughness weight to the right of the highlighted site to
1. Correspondingly, the second derivative has become relatively
small to the right of that site. The total effect is a very smooth but
not very accurate fit away from the peak, while in the peak area,
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the spline fit is much better but the second derivative is much
larger, as is shown in the auxiliary graph below.

At the sites where there is a jump in the roughness weight, there
is a corresponding jump in the second derivative. If you increase
the Parameter value, the error across the peak area decreases
but the second derivative remains quite large, while the opposite
holds true away from the peak area.

See Also csape, csapi, csaps, spap2, spapi, spaps
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Purpose Taylor coefficients from local B-coefficients

Syntax [v,b] = splpp(tx,a)
[v,b] = sprpp(tx,a)

Description These are utility commands of use in the conversion from B-form to
ppform (and in certain evaluations), but of no interest to the casual user.

[v,b] = splpp(tx,a) provides the matrices v and b, both of the same
size [r,k] as a, and related to the input in the following way.

For i=1:r, b(i,:) are the B-coefficients, with respect to the knot
sequence [tx(i,1:k-1),0,...,0], of the polynomial of order k on
the interval [tx(i,k-1) .. tx(i,k)] whose k B-spline coefficients,
with respect to the knot sequence tx(i,:), are in a(i,:). This is
done by repeated knot insertion (of the knot 0). It is assumed that
tx(i,k-1)<0<=tx(i,k).

For i=1:r, v(i,:) are the polynomial coefficients for that polynomial,

i.e., v(i,j) is the number , j=1:k, with having the
knots tx(i,:) and the B-coefficients a(i,:).

[v,b] = sprpp(tx,a) carries out exactly the same job, except
that now b(i,:) are the B-coefficients for that polynomial with
respect to the knot sequence [0,...,0,tx(i,k: 2*(k-1))], and,

correspondingly, v(i,j) is , j=1:k. Also, now it is
assumed that tx(i,k-1)<=0<tx(i,k).

Examples The statement [v,b]=splpp([-2 -1 0 1],[0 1 0]) provides the
sequence

v = -1.0000 -1.0000 0.5000 =

with the B-spline with knots -2, -1, 0, 1. This is so because the l in
splpp indicates the limit from the left, and the second argument, [0 1
0], indicates the spline s in question to be
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i.e., this particular linear combination of the third-order B-splines for
the knot sequence ..., -2, -1,0,1,... (Note that the values calculated do
not depend on the knots marked ?.) The above statement also provides
the sequence b = 0 1.0000 0.5000 of B-spline coefficients for the
polynomial piece of s on the interval [-1. .0], and with respect to the
knot sequence ?, -2, -1, 0, 0, ?.

In other words, on the interval [-1. .0], the B-spline with knots 2, -1,
0, 1 can be written

The statement [v,b]=sprpp([-1 0 1 2],[1 0 0]) provides the
sequence

v = [0.5000 -1.0000 0.5000] =

with the B-spline with knots ?,-1,0,1. Its polynomial piece on the
interval [0..1] is independent of the choice of ?, so we might as well think
of ? as -2, i.e., we are dealing with the same B-spline as before. Note
that the last two numbers agree with the limits from the left computed
above, while the first number does not. This reflects the fact that a
quadratic B-spline with simple knots is continuous with continuous
first, but discontinuous second, derivative. (It also reflects the fact that
the leftmost knot of a B-spline is irrelevant for its right-most polynomial
piece.) The sequence b = 0.5000 0 0 also provided states that, on the
interval [0. .1], the B-spline can be written
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Purpose Put together spline in B-form

Syntax spmak(knots,coefs)
spmak(knots,coefs,sizec)
spmak

Description The command spmak(...) puts together a spline function in B-form,
from minimal information, with the rest inferred from the input.
fnbrk returns all the parts of the completed description. In this way,
the actual data structure used for the storage of this form is easily
modified without any effect on the various fn... commands that use
this construct.

spmak(knots,coefs) returns the B-form of the spline specified by the
knot information in knots and the coefficient information in coefs.

The action taken by spmak depends on whether the function is
univariate or multivariate, as indicated by knots being a sequence or a
cell array. For the description, let sizec be size(coefs).

If knots is a sequence (required to be non-decreasing), then the
spline is taken to be univariate, and its order k is taken to be
length(knots)-sizec(end). This means that each ‘column’
coefs(:,j) of coefs is taken to be a B-spline coefficient of the spline,
hence the spline is taken to be sizec(1:end-1)-valued. The basic
interval of the B-form is [knots(1) .. knots(end)].

Knot multiplicity is held to be ≤ k. This means that the coefficient
coefs(:,j) is simply ignored in case the corresponding B-spline has
only one distinct knot, i.e., in case knots(j) equals knots(j+k).

If knots is a cell array, of length m, then the spline is taken to be
m-variate, and coefs must be an (r+m)-dimensional array, – except
when the spline is to be scalar-valued, in which case, in contrast to
the univariate case, coefs is permitted to be an m-dimensional array,
but sizec is reset by

sizec = [1, sizec]; r = 1;
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With this, the spline is sizec(1:r)-valued, the ith entry of the m-vector
k is computed as length(knots{i}) - sizec(r+i), i=1:m, and the
ith entry of the cell array of basic intervals is set to [knots{i}(1),
knots{i}(end)].

spmak(knots,coefs,sizec) lets you supply the intended size of the
array coefs. Assuming that coefs is correctly sized, this is of concern
only in the rare case that coefs has one or more trailing singleton
dimensions. For, MATLAB suppresses trailing singleton dimensions,
hence, without this explicit specification of the intended size of coefs,
spmak would interpret coefs incorrectly.

spmak prompts you for knots and coefs.

Examples spmak(1:6,0:2) constructs a spline function with basic interval [1. .6],
with 6 knots and 3 coefficients, hence of order 6 - 3 = 3.

spmak(t,1) provides the B-spline in B-form.

The coefficients may be d-vectors (e.g., 2-vectors or 3-vectors), in which
case the resulting spline is a curve or surface (in R2 or R3).

If the intent is to construct a 2-vector-valued bivariate polynomial on
the rectangle , linear in the first variable and constant in
the second, say

coefs = zeros([2 2 1]); coefs(:,:,1) = [1 0;0 1];

then the straightforward

sp = spmak({[-1 -1 1 1],[0 1]},coefs);

will result in the error message ‘There should be no more knots
than coefficients’, because the trailing singleton dimension of coefs
will not be perceived by spmak, while proper use of that third argument,
as in

sp = spmak({[-1 -1 1 1],[0 1]},coefs,[2 2 1]);

will succeed. Replacing here [2 2 1] by size(coefs) would not work.
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See the demo “Intro to B-form” for other examples.

See Also spbrk

Diagnostics There will be an error return if the proposed knot sequence fails
to be nondecreasing, or if the coefficient array is empty, or if there
are not more knots than there are coefficients. If the spline is to be
multivariate, then this last diagnostic may be due to trailing singleton
dimensions in coefs.
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Purpose Explanation of Spline Toolbox terms

Syntax spterms(term)
expl = spterms(term)
[...,term] = spterms(...)

Description spterms(term) provides, in a message box, an explanation of the
technical term indicated by the string term as used in the Spline
Toolbox product and, specifically, in the GUI splinetool. Only the first
few (but at least two) letters of the desired term need to be specified,
and the full term is shown in the title of the message box.

expl = spterms(term) returns, in expl, the string, or cell array of
strings, comprising the explanation of the desired term.

[...,term] = spterms(...) also returns, in term, the fully
spelled-out term actually used.

Examples spterms('sp') gives an explanation of the term ‘spline’, while
spterms('spline i') explains the terms ‘spline interpolation’.

help spterms provides the list of all available terms.

See Also splinetool, “List of Terms” on page A-3 in the Spline Toolbox
documentation.
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Purpose Scattered translates collocation matrix

Syntax colmat = stcol(centers,x,type)
colmat = stcol(...,'tr')

Description colmat = stcol(centers,x,type) is the matrix whose (i,j)th entry is

with the bivariate functions and the number n depending on the
centers and the string type, as detailed in the description of stmak.

centers and x must be matrices with the same number of rows.

The default for type is the string 'tp', and for this default, n equals
size(centers,2), and the functions are given by

with the thin-plate spline basis function

and with denoting the Euclidean norm of the vector .

Note See stmak for a description of other possible values for type.

The matrix colmat is the coefficient matrix in the linear system

that the coefficients of the function must satisfy in order
that interpolate the value at the site x(:,i), all i.

colmat = stcol(...,'tr') returns the transpose of the matrix
returned by stcol(...).
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Examples Example 1. The following evaluates and plots the function

on a regular mesh, with the above thin-plate basis function, and with
c1, c2, c3 three points on the unit circle; see the figure below.

a = [0,2/3*pi,4/3*pi]; centers = [cos(a), 0; sin(a), 0];
[xx,yy] = ndgrid(linspace(-2,2,45));
xy = [xx(:) yy(:)].';
coefs = [1 1 1 -3.5];
zz = reshape( coefs*stcol(centers,xy,'tr') , size(xx));
surf(xx,yy,zz), view([240,15]), axis off

Example 2. The following also evaluates, on the same mesh, and plots
the length of the gradient of the function in Example 1.

zz = reshape( sqrt(...
([coefs,0]*stcol(centers,xy,'tp10','tr')).^2 + ...
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([coefs,0]*stcol(centers,xy,'tr','tp01')).^2),
size(xx));
figure, surf(xx,yy,zz), view([220,-15]), axis off

See Also spcol, stmak
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Purpose Put together function in stform

Syntax stmak(centers,coefs)
st = stmak(centers,x,type)
st = stmak(centers,coefs,type,interv)

Description stmak(centers,coefs) returns the stform of the function given by

with

the thin-plate spline basis function, and with denoting the Euclidean
norm of the vector .

centers and coefsmust be matrices with the same number of columns.

st = stmak(centers,x,type) stores in st the stform of the function
given by

with the as indicated by the string type, which can be one of the
following:

• 'tp00', for the thin-plate spline;

• 'tp10’, for the first derivative of a thin-plate spline wrto its first
argument;

• 'tp01', for the first derivative of a thin-plate spline wrto its second
argument;

• 'tp', the default.

Here are the details.
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'tp00'
, =centers(:,j), j=1:n-3

with

'tp10'
, =centers(:,j), j=1:n-1

with , and the partial derivative of
wrto

'tp01'
, =centers(:,j), j=1:n-1

with , and the partial derivative of
wrto

'tp'
(default) , =centers(:,j), j=1:n

with

st = stmak(centers,coefs,type,interv) also specifies the basic
interval for the stform, with interv{j} specifying, in the form [a,b],
the range of the jth variable. The default for interv is the smallest
such box that contains all the given centers.

Examples Example 1. The following generates the figure below, of the thin-plate

spline basis function, , but suitably restricted to show
that this function is negative near the origin. For this, the extra lines
are there to indicate the zero level.

inx = [-1.5 1.5]; iny = [0 1.2];
fnplt(stmak([0;0],1),{inx,iny})
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hold on, plot(inx,repmat(linspace(iny(1),iny(2),11),2,1),'r')
view([25,20]),axis off, hold off

Example 2. We now also generate and plot, on the very same domain,
the first partial derivative of the thin-plate spline basis function,
with respect to its second argument.

inx = [-1.5 1.5]; iny = [0 1.2];
fnplt(stmak([0;0],[1 0],'tp01',{inx,iny}))
view([13,10]),shading flat,axis off

Note that, this time, we have explicitly set the basic interval for the
stform.

The resulting figure, below, shows a very strong variation near the
origin. This reflects the fact that the second derivatives of have a
logarithmic singularity there.

11-133



stmak

See Also stcol
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Purpose Positive part

Syntax xp = subplus(x)

Description xp = subplus(x) returns , i.e., the positive part of x, which is x
if x is nonnegative and 0 if x is negative. In other words, xp equals
max(x,0). If x is an array, this operation is applied entry by entry.

Examples Example 1. Here is a plot of the essential part of the subplus function,
as generated by

x = -2:2; plot(x,subplus(x),'linew',4), axis([-2,2,-.5,2.5])

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0
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Example 2. The following anonymous function describes the so-called
hat function:

hat = @(x) subplus(x) - 2*subplus(x-1) + subplus(x-2);

i.e., the spline also given by spmak(0:2,1), as the following plot shows.

x = -.5:.5:2.5; plot(x,hat(x),'linew',4), set(gca,'Fontsize',16)
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Purpose Titanium test data

Syntax [x,y] = titanium

Description [x,y] = titanium returns measurements of a certain property of
titanium as a function of temperature. Since their use in , these data
have become a standard test for data fitting since they are hard to fit by
classical techniques and have a significant amount of noise.

Examples The plot of the data shown below is generated by the following
commands:

[x,y] = titanium; plot(x,y,'ok'), set(gca,'Fontsize',16)
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References C. de Boor and J. R. Rice, Least squares cubic spline approximation II -
Variable knots, CSD TR 21, Comp.Sci., Purdue Univ., April 1968.
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Purpose Thin-plate smoothing spline

Syntax tpaps(x,y)
tpaps(x,y,p)
[...,p] = tpaps(...)

Description tpaps(x,y) is the stform of a thin-plate smoothing spline for the
given data sites x(:,j) and the given data values y(:,j). The x(:,j)
must be distinct points in the plane, the values can be scalars, vectors,
matrices, even ND-arrays, and there must be exactly as many values as
there are sites.

The thin-plate smoothing spline is the unique minimizer of the
weighted sum

with the error measure

and the roughness measure

Here, the integral is taken over all of , denotes the sum of squares
of all the entries of , and denotes the partial derivative of
with respect to its th argument, hence the integrand involves second
partial derivatives of . The smoothing parameter p is chosen so that
(1-p)/p equals the average of the diagonal entries of the matrix A,
with A + (1-p)/p*eye(n) the coefficient matrix of the linear system
for the n coefficients of the smoothing spline to be determined. This
choice of p is meant to ensure that we are in between the two extremes,
of interpolation (when p is close to 1 and the coefficient matrix is
essentially A) and complete smoothing (when p is close to 0 and the
coefficient matrix is essentially a multiple of the identity matrix). This
should serve as a good first guess for p.
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tpaps(x,y,p) also inputs the smoothing parameter, p, a number
between 0 and 1. As the smoothing parameter varies from 0 to 1,
the smoothing spline varies, from the least-squares approximation to
the data by a linear polynomial when p is 0, to the thin-plate spline
interpolant to the data when p is 1.

[...,p] = tpaps(...) also returns the smoothing parameter
actually used.

Examples Example 1. The following code obtains values of a smooth function at
31 randomly chosen sites, adds some random noise to these values, and
then uses tpaps to recover the underlying exact smooth values. To
illustrate how well tpaps does in this case, the code plots, in addition to
the smoothing spline, the exact values (as black balls) as well as each
arrow leading from a smoothed value to the corresponding noisy value.

rand('seed',23); nxy = 31;
xy = 2*(rand(2,nxy)-.5); vals = sum(xy.^2);
noisyvals = vals + (rand(size(vals))-.5)/5;
st = tpaps(xy,noisyvals); fnplt(st), hold on
avals = fnval(st,xy);
plot3(xy(1,:),xy(2,:),vals,'wo','markerfacecolor','k')
quiver3(xy(1,:),xy(2,:),avals,zeros(1,nxy),zeros(1,nxy), ...

noisyvals-avals,'r'), hold off
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Example 2. The following code uses an interpolating thin-plate spline
to vector-valued data values to construct a map, from the plane to
the plane, that carries the unit square pretty

much onto the unit disk , as shown by the picture
generated.

n = 64; t = linspace(0,2*pi,n+1); t(end) = [];
values = [cos(t); sin(t)];
centers = values./repmat(max(abs(values)),2,1);
st = tpaps(centers, values, 1);
fnplt(st), axis equal

Note the choice of 1 for the smoothing parameter here, to obtain
interpolation.
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Limitations The determination of the smoothing spline involves the solution of a
linear system with as many unknowns as there are data points. Since
the matrix of this linear system is full, the solving can take a long time
even if, as is the case here, an iterative scheme is used when there are
more than 728 data points. The convergence speed of that iteration is
strongly influenced by p, and is slower the larger p is. So, for large
problems, use interpolation, i.e., p equal to 1, only if you can afford
the time.

See Also csaps, spaps
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Glossary

The Glossary consists of these sections:

• “Introduction” on page A-2

• “List of Terms” on page A-3



A Glossary

Introduction
This glossary provides brief definitions of the basic mathematical terms and
notation used in this guide. But, in contrast to standard glossaries, the terms
do not appear here in alphabetical order. This is not much of a disadvantage
since the glossary is quite short (and all the terms appear in the Index in any
case). The order is carefully chosen to have the explanation of each term only
use terms discussed earlier.

In this way, you may, the first time around, choose to read the entire glossary
from start to finish, for a cohesive introduction to these terms.
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List of Terms
Intervals

Since MATLAB uses the notation [a,b] to indicate a matrix with the
two columns, a and b, we use in this guide the notation [a .. b] to
indicate the closed interval with endpoints a and b. We do the same for
open and half-open intervals. For example, [a .. b) denotes the interval
that includes its left endpoint, a, and excludes its right endpoint, b.

Vectors
A d-vector is a list of d real numbers, i.e., a point in Rd. In MATLAB,
a d-vector is stored as a matrix of size [1,d], i.e., as a row-vector, or as
a matrix of size [d,1], i.e., as a column-vector. In the Spline Toolbox,
vectors are column vectors.

Functions
In this toolbox, the term function is used in its mathematical sense,
and so describes any rule that associates, to each element of a certain
set called its domain, some element in a certain set called its target.
Common examples in this toolbox are polynomials and splines. But
even a point x in Rd, i.e., a d-vector, may be thought of as a function,
namely the function, with domain the set {1,...,d} and target the real
numbers R, that, for i=1:d, associates to i the real number x(i).

The range of a function is the set of its values.

We distinguish between scalar-valued, vector-valued, matrix-valued,
and ND-valued functions. Scalar-valued functions have the real
numbers R (or, more generally, the complex numbers) as their target,
while d-vector-valued functions have Rd as their target; if, more
generally, d is a vector of positive integers, then d-valued functions
have the d-dimensional real arrays as their target. We also distinguish
between univariate and multivariate functions. The former have some
real interval, or, perhaps, all of R as their domain, while m-variate
functions have some subset, or perhaps all, of Rm as their domain.

Placeholder notation
If f is a bivariate function, and y is some specific value of its second
variable, then
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is the univariate function whose value at x is f(x,y).

Curves and surfaces vs. functions
In this toolbox, the term function usually refers to a scalar-valued
function. A vector-valued function is called here a:

curve if its domain is some interval

surface if its domain is some rectangle

To be sure, to a mathematician, a curve is not a vector-valued function
on some interval but, rather, the range of such a (continuous) function,
with the function itself being just one of infinitely many possible
parametrizations of that curve.

Tensor products
A bivariate tensor product is any weighted sum of products of a function
in the first variable with a function in the second variable, i.e., any
function of the form

More generally, an m-variate tensor product is any weighted sum of
products of m univariate functions.

Polynomials
A univariate scalar-valued polynomial is specified by the list of its
polynomial coefficients. The length of that list is the order of that
polynomial, and, in this toolbox, the list is always stored as a row vector.
Hence an m-list of polynomials of order k is always stored as a matrix
of size [m,k].

The coefficients in a list of polynomial coefficients are listed from
"highest" to "lowest", to conform to the MATLAB convention, as in the
command polyval(a,x). To recall: assuming that x is a scalar and that
a has k entries, this command returns the number

In other words, the command treats the list a as the coefficients in a
power form. For reasons of numerical stability, such a coefficient list is
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treated in this toolbox, more generally, as the coefficients in a shifted,
or, local power form, for some given center c. This means that the
value of the polynomial at some point x is supplied by the command
polyval(a,x-c).

A vector-valued polynomial is treated in exactly the same way, except
that now each polynomial coefficient is a vector, say a d-vector.
Correspondingly, the coefficient list now becomes a matrix of size [d,k].

Multivariate polynomials appear in this toolbox mainly as tensor
products. Assuming first, for simplicity, that the polynomial in question
is scalar-valued but m-variate, this means that its coefficient “list” a is
an m-dimensional array, of size [k1,...,km] say, and its value at some
m-vector x is, correspondingly, given by

for some "center" c.

Piecewise-polynomials
A piecewise-polynomial function refers to a function put together from
polynomial pieces. If the function is univariate, then, for some strictly
increasing sequence , and for i=1:l, it agrees with some
polynomial pi on the interval . Outside the interval ,
its value is given by its first, respectively its last, polynomial piece.The
are its breaks. All the multivariate piecewise-polynomials in this

toolbox are tensor products of univariate ones.

B-splines
In this toolbox, the term B-spline is used in its original meaning only,
as given to it by its creator, I. J. Schoenberg, and further amplified in
his basic 1966 article with Curry, and used in PGS and many other
books on splines. According to Schoenberg, the B-spline with knots tj,
..., tj+k is given by the following somewhat obscure formula (see, e.g.,
IX(1) in PGS):
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To be sure, this is only one of several reasonable normalizations of the
B-spline, but it is the one used in this toolbox. It is chosen so that

But, instead of trying to understand the above formula for the B-spline,
look at the reference pages for the GUI bspligui for some of the basic
properties of the B-spline, and use that GUI to gain some first-hand
experience with this intriguing function. Its most important property
for the purposes of this toolbox is also the reason Schoenberg used the
letter B in its name:

Every space of (univariate) piecewise-polynomials of a given order has a
Basis consisting of B-splines.

Splines
Consider the set

of all (scalar-valued) piecewise-polynomials of order k with breaks
that, for i=2:l, may have a jump across in its th

derivative but have no jump there in any lower order derivative. This
set is a linear space, in the sense that any scalar multiple of a function
in S is again in S, as is the sum of any two functions in S.

Accordingly, S contains a basis (in fact, infinitely many bases), that is, a
sequence f1,...,fn so that every f in S can be written uniquely in the form

for suitable coefficients aj. The number n appearing here is the
dimension of the linear space S. The coefficients aj are often referred to
as the coordinates of f with respect to this basis.

In particular, according to the Curry-Schoenberg Theorem, our space S
has a basis consisting of B-splines, namely the sequence of all B-splines
of the form , j=1:n, with the knot sequence t obtained
from the break sequence ξ and the sequence µ by the following recipe:

• have both and occur in t exactly k times
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• for each i=2:l, have occur in t exactly times

• make sure the sequence is nondecreasing and only contains elements
from

Note the correspondence between the multiplicity of a knot and the
smoothness of the spline across that knot. In particular, at a simple
knot, that is a knot that appears exactly once in the knot sequence, only
the (k-1)st derivative may be discontinuous.

Rational splines
A rational spline is any function of the form r(x) = s(x)/w(x), with both s
and w splines and, in particular, w a scalar-valued spline, while s often
is vector-valued. In this toolbox, there is the additional requirement
that both s and w be of the same form and even of the same order, and
with the same knot or break sequence. This makes it possible to store
the rational spline r as the ordinary spline R whose value at x is the
vector [s(x);w(x)]. It is easy to obtain r from R. For example, if v is the
value of R at x, then v(1:end-1)/v(end) is the value of r at x. As
another example, consider getting derivatives of r from those of R. Since
s = wr, Leibniz’ rule tells us that

Hence, if v(:,j) contains Dj-1R(x), j=1:m+1, then

provides the value of .

Thin-plate splines
A bivariate thin-plate spline is of the form

with a univariate function, and denoting the Euclidean
length of the vector y. The sites cj are called the centers, and the radially
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symmetric function is called the basis function, of this
particular stform.

Interpolation
Interpolation is the construction of a function f that matches given data
values, yi, at given data sites, xi, in the sense that f(xi) = yi, all i.

The interpolant, f, is usually constructed as the unique function of the
form

that matches the given data, with the functions fj chosen
“appropriately”. Many considerations might enter that choice. One
of these considerations is sure to be that one can match in this way
arbitrary data. For example, polynomial interpolation is popular since,
for arbitrary n data points (xi,yi) with distinct data sites, there is exactly
one polynomial of order n that matches these data. This says that
choosing the fj in the above “model” to be fj(x) = xj

-1, j=1:n, guarantees
exactly one such interpolant to arbitrary n data points with distinct
data sites.

In spline interpolation, one chooses the fj to be the n consecutive
B-splines Bj(x) = B(x|tj,...,tj+k), j=1:n, of order k for some knot sequence

. For this choice, we have the following important
theorem.

Schoenberg-Whitney Theorem
Let x1<x2 < < xn. For arbitrary corresponding values yi, i=1:n,
there exists exactly one spline f of order k with knot sequence tj,
j=1:n+k, so that if and only if the sites satisfy the
Schoenberg-Whitney conditions of order k with respect to that knot
sequence t, namely

with equality allowed only if the knot in question has multiplicity k, i.e.,
appears k times in t. In that case, the spline being constructed may
have a jump discontinuity across that knot, and it is its limit from the
right or left at that knot that matches the value given there.
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Least-squares approximation
In least-squares approximation, the data may be matched only
approximately. Specifically, the linear system

is solved in the least-squares sense. In this, some weighting is involved,
i.e., the coefficients aj are determined so as to minimize the error
measure

for certain nonnegative weights wi at the user’s disposal, with the
default being to have all these weights the same.

Smoothing
In spline smoothing, one also tries to make such an error measure
small, but tries, at the same time, to keep the following roughness
measure small,

with a nonnegative weight function that is usually just the constant
function 1, and Dm f the mth derivative of f. The competing claims of
small E(f) and small F(Dm f) are mediated by a smoothing parameter,
for example, by minimizing

for some choice of or of p, and over all f for which this expression
makes sense.

Remarkably, if the roughness weight is constant, then the unique
minimizer f is a spline of order 2m, with knots only at the data sites,
and all the interior knots simple, and with its derivatives of orders
m,...,2m-2 equal to zero at the two extreme data sites, the so-called
“natural” end conditions. The larger the smoothing parameter
or used, the more closely f matches the given data and the
larger is its mth derivative.
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For data values yi at sites ci in the plane, one uses instead the error
measure and roughness measure

and, correspondingly, the minimizer of the sum is not a
polynomial spline but a thin-plate spline.

Note that the unique minimizer of for given

is also the unique minimizer of for
and vice versa.

2D, 3D, ND
Terms such as ‘a 2D problem’ or ‘a 3D problem’ are not used in this
toolbox, because they are not well defined. A 2D problem might involve
data points in the plane, such as (i) points on some curve, or else (ii)
points on the graph of some function, or (iii) it might involve data sites
in the plane. If it is (i), then we are talking about constructing a spline
curve, i.e., a vector-valued spline function, if it is (ii) a scalar-valued
spline function, of one variable in both cases. If it is (iii), then we are
talking about constructing a bivariate scalar-valued spline function. A
‘3D problem’ is similarly ambiguous. It could involve a curve, a surface,
a function of three variables, ... . Better to classify problems by the
domain and target of the function(s) to be constructed.

Almost all the spline construction commands in this toolbox can deal
with ND-valued data, meaning that the data values are ND-arrays. If d
is the size of such an array, then we also call them d-valued.
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